Mass transport problem and derivation
Nacereddine Belili; Henri Heinich
Applicationes Mathematicae (1999)
- Volume: 26, Issue: 3, page 299-314
- ISSN: 1233-7234
Access Full Article
topAbstract
topHow to cite
topBelili, Nacereddine, and Heinich, Henri. "Mass transport problem and derivation." Applicationes Mathematicae 26.3 (1999): 299-314. <http://eudml.org/doc/219241>.
@article{Belili1999,
abstract = {A characterization of the transport property is given. New properties for strongly nonatomic probabilities are established. We study the relationship between the nondifferentiability of a real function f and the fact that the probability measure $λ_\{f*\}:=λ◦(f*)^\{-1\}$, where f*(x):=(x,f(x)) and λ is the Lebesgue measure, has the transport property.},
author = {Belili, Nacereddine, Heinich, Henri},
journal = {Applicationes Mathematicae},
keywords = {Monge-Kantorovich transportation problem; cyclic monotonicity; (c-c)-surface; Lévy-Wasserstein distance; optimal coupling; strongly nonatomic probability},
language = {eng},
number = {3},
pages = {299-314},
title = {Mass transport problem and derivation},
url = {http://eudml.org/doc/219241},
volume = {26},
year = {1999},
}
TY - JOUR
AU - Belili, Nacereddine
AU - Heinich, Henri
TI - Mass transport problem and derivation
JO - Applicationes Mathematicae
PY - 1999
VL - 26
IS - 3
SP - 299
EP - 314
AB - A characterization of the transport property is given. New properties for strongly nonatomic probabilities are established. We study the relationship between the nondifferentiability of a real function f and the fact that the probability measure $λ_{f*}:=λ◦(f*)^{-1}$, where f*(x):=(x,f(x)) and λ is the Lebesgue measure, has the transport property.
LA - eng
KW - Monge-Kantorovich transportation problem; cyclic monotonicity; (c-c)-surface; Lévy-Wasserstein distance; optimal coupling; strongly nonatomic probability
UR - http://eudml.org/doc/219241
ER -
References
top- [1] T. Abdellaoui et H. Heinich, Sur la distance de deux lois dans le cas vectoriel, C. R. Acad. Sci. Paris 319 (1994), 397-400. Zbl0808.60008
- [2] N. Belili, A theorem of stochastic representation related to the Monge-Kantorovich problem, Statist. Probab. Lett. 41 (1999), 139-143. Zbl0916.60005
- [3] C. L. Belna, M. J. Cargo, M. J. Evans and P. D. Humke, Analogues of the Denjoy-Young-Saks theorem, Trans. Amer. Math. Soc. 271 (1982), 253-260. Zbl0486.26003
- [4] Y. Brenier, Décomposition polaire et réarrangement monotone des champs de vecteurs, C. R. Acad. Sci. Paris 305 (1987), 805-808. Zbl0652.26017
- [5] Y. Brenier, The dual least action problem for an ideal incompressible fluid, Arch. Rational Mech. Anal. 122 (1991), 323-351. Zbl0797.76006
- [6] Y. Brenier, Polar factorization and monotone rearragement of vector-valued functions, Comm. Pure Appl. Math. 44 (1991), 375-417.
- [7] A. Bruckner, Differentiation of Real Functions, CRM Monogr. Ser. 5, Amer. Math. Soc., 1994.
- [8] J. A. Cuesta-Albertos and C. Matrán-Bea, Notes on the Wasserstein metric in Hilbert spaces, Ann. Probab. 17 (1989), 1264-1276. Zbl0688.60011
- [9] J. A. Cuesta-Albertos, C. Matrán-Bea and A. Tuero-Diaz, On lower bounds for the -Wasserstein metric in a Hilbert space, J. Theoret. Probab. 9 (1996), 263-283. Zbl0870.60005
- [10] J. A. Cuesta-Albertos, C. Matrán-Bea and A. Tuero-Diaz, Propreties of the optimal maps for the -Monge-Kantorovich transportation problem, preprint, 1996. Zbl0870.60005
- [11] C. Dellacherie et P. A. Meyer, Probabilités et potentiel, Hermann, Paris, 1983.
- [12] A. Faure, Sur le théorème de Denjoy-Young-Saks, C. R. Acad. Sci. Paris 320 (1995), 415-418. Zbl0835.26006
- [13] W. Gangbo and R. J. McCann, The geometry of optimal transportation, Acta Math. 177 (1996), 113-161. Zbl0887.49017
- [14] K. M. Garg, Applications of Denjoy analogue. II: Local structure of level sets and Dini derivates. III: Distribution of various typical level sets, Acta Math. Acad. Sci. Hungar. 14 (1963), 183-195. Zbl0142.02104
- [15] H. Heinich et J. C. Lootgieter, Convergence des fonctions monotones, C. R. Acad. Sci. Paris 322 (1996), 869-874. Zbl0849.60027
- [16] L. V. Kantorovich, On the translocation of masses, C. R. (Doklady) Acad. Sci. URSS (N.S.) 37 (1942), 199-201. Zbl0061.09705
- [17] L. V. Kantorovich, On a problem of Monge, Uspekhi Mat. Nauk 3 (1948), 225-226 (in Russian).
- [18] M. Knott and C. S. Smith, On the optimal transportation of distributions, J. Optim. Theory Appl. 52 (1987), 323-329. Zbl0586.49005
- [19] M. Knott and C. S. Smith, On Hoeffding-Fréchet bounds and cyclic monotone relations, J. Multivariate Anal. 40 (1992), 328-334. Zbl0745.62055
- [20] R. J. McCann, Existence and uniqueness of monotone measure-preserving maps, Duke Math. J. 80 (1995), 309-323. Zbl0873.28009
- [21] R. J. McCann, personal communication, 1996.
- [22] G. Monge, Mémoire sur la théorie des déblais et des remblais, dans : Histoires de l'Académie Royale des Sciences de Paris, avec les mémoires de Mathématiques et de Physique pour la même année, 1781, 257-263.
- [23] S. T. Rachev, The Monge-Kantorovich mass transference problem and its stochastic applications, Theory Probab. Appl. 29 (1984), 647-676. Zbl0581.60010
- [24] S. T. Rachev and L. Rüschendorf, A characterization of random variables with minimum -distance, J. Multivariate Anal. 32 (1990), 48-54. Zbl0688.62034
- [25] S. T. Rachev and L. Rüschendorf, Mass Transportation Problems, Springer, New York, 1998. Zbl0990.60500
- [26] R. T. Rockafellar, Convex Analysis, Princeton Univ. Press, 1970. Zbl0193.18401
- [27] V. A. Rohlin, On the fundamental ideas of measure theory, Amer. Math. Soc. Transl. 71 (1952), 1-54.
- [28] L. Rüschendorf, Fréchet bounds and their applications, in: S. Kotz, G. Dall'Aglio and G. Salinetti (eds.), Advances in Probability Distributions with Given Marginals: Beyond the Copulas, Kluwer, Dordrecht, 1991, 141-176.
- [29] L. Rüschendorf, Optimal solutions of multivariate coupling problems, Appl. Math. (Warsaw) 23 (1995), 325-338. Zbl0844.62047
- [30] S. Saks, Sur les nombres dérivés des fonctions, Fund. Math. 5 (1924), 98-104.
- [31] A. Tuero-Diaz, On the stochastic convergence of representations based on Wasserstein metrics, Ann. Probab. 21 (1993), 72-85. Zbl0770.60012
- [32] L. Zajiček, On the differentiation of convex functions in finite and infinite dimensional spaces, Czechoslovak Math. J. 29 (1979), 340-348. Zbl0429.46007
- [33] L. Zajiček, On the symmetry of Dini derivates of arbitrary functions, Comment. Math. Univ. Carolin. 22 (1981), 195-209. Zbl0462.26003
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.