Mass transport problem and derivation

Nacereddine Belili; Henri Heinich

Applicationes Mathematicae (1999)

  • Volume: 26, Issue: 3, page 299-314
  • ISSN: 1233-7234

Abstract

top
A characterization of the transport property is given. New properties for strongly nonatomic probabilities are established. We study the relationship between the nondifferentiability of a real function f and the fact that the probability measure λ f * : = λ ( f * ) - 1 , where f*(x):=(x,f(x)) and λ is the Lebesgue measure, has the transport property.

How to cite

top

Belili, Nacereddine, and Heinich, Henri. "Mass transport problem and derivation." Applicationes Mathematicae 26.3 (1999): 299-314. <http://eudml.org/doc/219241>.

@article{Belili1999,
abstract = {A characterization of the transport property is given. New properties for strongly nonatomic probabilities are established. We study the relationship between the nondifferentiability of a real function f and the fact that the probability measure $λ_\{f*\}:=λ◦(f*)^\{-1\}$, where f*(x):=(x,f(x)) and λ is the Lebesgue measure, has the transport property.},
author = {Belili, Nacereddine, Heinich, Henri},
journal = {Applicationes Mathematicae},
keywords = {Monge-Kantorovich transportation problem; cyclic monotonicity; (c-c)-surface; Lévy-Wasserstein distance; optimal coupling; strongly nonatomic probability},
language = {eng},
number = {3},
pages = {299-314},
title = {Mass transport problem and derivation},
url = {http://eudml.org/doc/219241},
volume = {26},
year = {1999},
}

TY - JOUR
AU - Belili, Nacereddine
AU - Heinich, Henri
TI - Mass transport problem and derivation
JO - Applicationes Mathematicae
PY - 1999
VL - 26
IS - 3
SP - 299
EP - 314
AB - A characterization of the transport property is given. New properties for strongly nonatomic probabilities are established. We study the relationship between the nondifferentiability of a real function f and the fact that the probability measure $λ_{f*}:=λ◦(f*)^{-1}$, where f*(x):=(x,f(x)) and λ is the Lebesgue measure, has the transport property.
LA - eng
KW - Monge-Kantorovich transportation problem; cyclic monotonicity; (c-c)-surface; Lévy-Wasserstein distance; optimal coupling; strongly nonatomic probability
UR - http://eudml.org/doc/219241
ER -

References

top
  1. [1] T. Abdellaoui et H. Heinich, Sur la distance de deux lois dans le cas vectoriel, C. R. Acad. Sci. Paris 319 (1994), 397-400. Zbl0808.60008
  2. [2] N. Belili, A theorem of stochastic representation related to the Monge-Kantorovich problem, Statist. Probab. Lett. 41 (1999), 139-143. Zbl0916.60005
  3. [3] C. L. Belna, M. J. Cargo, M. J. Evans and P. D. Humke, Analogues of the Denjoy-Young-Saks theorem, Trans. Amer. Math. Soc. 271 (1982), 253-260. Zbl0486.26003
  4. [4] Y. Brenier, Décomposition polaire et réarrangement monotone des champs de vecteurs, C. R. Acad. Sci. Paris 305 (1987), 805-808. Zbl0652.26017
  5. [5] Y. Brenier, The dual least action problem for an ideal incompressible fluid, Arch. Rational Mech. Anal. 122 (1991), 323-351. Zbl0797.76006
  6. [6] Y. Brenier, Polar factorization and monotone rearragement of vector-valued functions, Comm. Pure Appl. Math. 44 (1991), 375-417. 
  7. [7] A. Bruckner, Differentiation of Real Functions, CRM Monogr. Ser. 5, Amer. Math. Soc., 1994. 
  8. [8] J. A. Cuesta-Albertos and C. Matrán-Bea, Notes on the Wasserstein metric in Hilbert spaces, Ann. Probab. 17 (1989), 1264-1276. Zbl0688.60011
  9. [9] J. A. Cuesta-Albertos, C. Matrán-Bea and A. Tuero-Diaz, On lower bounds for the L 2 -Wasserstein metric in a Hilbert space, J. Theoret. Probab. 9 (1996), 263-283. Zbl0870.60005
  10. [10] J. A. Cuesta-Albertos, C. Matrán-Bea and A. Tuero-Diaz, Propreties of the optimal maps for the l 2 -Monge-Kantorovich transportation problem, preprint, 1996. Zbl0870.60005
  11. [11] C. Dellacherie et P. A. Meyer, Probabilités et potentiel, Hermann, Paris, 1983. 
  12. [12] A. Faure, Sur le théorème de Denjoy-Young-Saks, C. R. Acad. Sci. Paris 320 (1995), 415-418. Zbl0835.26006
  13. [13] W. Gangbo and R. J. McCann, The geometry of optimal transportation, Acta Math. 177 (1996), 113-161. Zbl0887.49017
  14. [14] K. M. Garg, Applications of Denjoy analogue. II: Local structure of level sets and Dini derivates. III: Distribution of various typical level sets, Acta Math. Acad. Sci. Hungar. 14 (1963), 183-195. Zbl0142.02104
  15. [15] H. Heinich et J. C. Lootgieter, Convergence des fonctions monotones, C. R. Acad. Sci. Paris 322 (1996), 869-874. Zbl0849.60027
  16. [16] L. V. Kantorovich, On the translocation of masses, C. R. (Doklady) Acad. Sci. URSS (N.S.) 37 (1942), 199-201. Zbl0061.09705
  17. [17] L. V. Kantorovich, On a problem of Monge, Uspekhi Mat. Nauk 3 (1948), 225-226 (in Russian). 
  18. [18] M. Knott and C. S. Smith, On the optimal transportation of distributions, J. Optim. Theory Appl. 52 (1987), 323-329. Zbl0586.49005
  19. [19] M. Knott and C. S. Smith, On Hoeffding-Fréchet bounds and cyclic monotone relations, J. Multivariate Anal. 40 (1992), 328-334. Zbl0745.62055
  20. [20] R. J. McCann, Existence and uniqueness of monotone measure-preserving maps, Duke Math. J. 80 (1995), 309-323. Zbl0873.28009
  21. [21] R. J. McCann, personal communication, 1996. 
  22. [22] G. Monge, Mémoire sur la théorie des déblais et des remblais, dans : Histoires de l'Académie Royale des Sciences de Paris, avec les mémoires de Mathématiques et de Physique pour la même année, 1781, 257-263. 
  23. [23] S. T. Rachev, The Monge-Kantorovich mass transference problem and its stochastic applications, Theory Probab. Appl. 29 (1984), 647-676. Zbl0581.60010
  24. [24] S. T. Rachev and L. Rüschendorf, A characterization of random variables with minimum l 2 -distance, J. Multivariate Anal. 32 (1990), 48-54. Zbl0688.62034
  25. [25] S. T. Rachev and L. Rüschendorf, Mass Transportation Problems, Springer, New York, 1998. Zbl0990.60500
  26. [26] R. T. Rockafellar, Convex Analysis, Princeton Univ. Press, 1970. Zbl0193.18401
  27. [27] V. A. Rohlin, On the fundamental ideas of measure theory, Amer. Math. Soc. Transl. 71 (1952), 1-54. 
  28. [28] L. Rüschendorf, Fréchet bounds and their applications, in: S. Kotz, G. Dall'Aglio and G. Salinetti (eds.), Advances in Probability Distributions with Given Marginals: Beyond the Copulas, Kluwer, Dordrecht, 1991, 141-176. 
  29. [29] L. Rüschendorf, Optimal solutions of multivariate coupling problems, Appl. Math. (Warsaw) 23 (1995), 325-338. Zbl0844.62047
  30. [30] S. Saks, Sur les nombres dérivés des fonctions, Fund. Math. 5 (1924), 98-104. 
  31. [31] A. Tuero-Diaz, On the stochastic convergence of representations based on Wasserstein metrics, Ann. Probab. 21 (1993), 72-85. Zbl0770.60012
  32. [32] L. Zajiček, On the differentiation of convex functions in finite and infinite dimensional spaces, Czechoslovak Math. J. 29 (1979), 340-348. Zbl0429.46007
  33. [33] L. Zajiček, On the symmetry of Dini derivates of arbitrary functions, Comment. Math. Univ. Carolin. 22 (1981), 195-209. Zbl0462.26003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.