L'arithmétique du groupe de Chow des zéro-cycles

Jean-Louis Colliot-Thélène

Journal de théorie des nombres de Bordeaux (1995)

  • Volume: 7, Issue: 1, page 51-73
  • ISSN: 1246-7405

How to cite

top

Colliot-Thélène, Jean-Louis. "L'arithmétique du groupe de Chow des zéro-cycles." Journal de théorie des nombres de Bordeaux 7.1 (1995): 51-73. <http://eudml.org/doc/247669>.

@article{Colliot1995,
author = {Colliot-Thélène, Jean-Louis},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {zero cycles of degree zero; rational equivalence; Brauer group},
language = {fre},
number = {1},
pages = {51-73},
publisher = {Université Bordeaux I},
title = {L'arithmétique du groupe de Chow des zéro-cycles},
url = {http://eudml.org/doc/247669},
volume = {7},
year = {1995},
}

TY - JOUR
AU - Colliot-Thélène, Jean-Louis
TI - L'arithmétique du groupe de Chow des zéro-cycles
JO - Journal de théorie des nombres de Bordeaux
PY - 1995
PB - Université Bordeaux I
VL - 7
IS - 1
SP - 51
EP - 73
LA - fre
KW - zero cycles of degree zero; rational equivalence; Brauer group
UR - http://eudml.org/doc/247669
ER -

References

top
  1. [1] S. Bloch, Torsion algebraic cycles, K2 and Brauer groups of function fields, in L.N.M. 844 (éd. M. Kervaire et M. Ojanguren) Springer1981. Zbl0467.12011
  2. [2] S. Bloch, On the Chow groups of certain rational surfaces, Ann. Sci. Ec. Norm. Sup.14 (1981), 41-59. Zbl0524.14006MR618730
  3. [3] S. Bloch, Algebraic K-theory, motives and algebraic cycles, Proceedings of the ICM, Kyoto, Japan 1990, Springer1991, Vol. 1, 43-54. Zbl0759.14001MR1159204
  4. [4] S. Bloch and A. Ogus, Gersten's conjecture and the homology of schemes, Ann. Sci. Éc. Norm. Sup.7 (1974), 181-202. Zbl0307.14008MR412191
  5. [5] S. Bloch and V. Srinivas, Remarks on correspondences and algebraic cycles, Am. J. Math.105 (1983), 1235-1253. Zbl0525.14003MR714776
  6. [6] J.W.S. Cassels, Arithmetic on curves of genus 1 (VII). The dual exact sequence, J. für die reine und angew. Math. (Crelle) 216 (1964), 150-158. Zbl0146.42304MR169849
  7. [7] J.-L. Colliot-Thélène, Hilbert's theorem 90 for K2, with application to the Chow groups of rational surfaces, Invent. math.71 (1983), 1-20. Zbl0527.14011MR688259
  8. [8] J.-L. Colliot-Thélène, Cycles algébriques de torsion et K-théorie algébrique, in Arithmetical Algebraic Geometry, C.I.M.E. 1991, E. Ballico ed., L. N. M. 1553, Springer-Verlag, 1993. Zbl0806.14002MR1338859
  9. [9] J.-L. Colliot-Thélène et F. Ischebeck, L'équivalence, rationnelle sur les cycles de dimension zéro des variétés algébriques réelles, C. R. Acad. Sc. Paris292 (1981), 723-725. Zbl0472.14016MR618896
  10. [10] J.-L. Colliot-Thélène et W. Raskind, Groupe de Chow de codimension deux des variétés définies sur un corps de nombres: un théorème de finitude pour la torsion, Invent. math.105 (1991), 221-245. Zbl0752.14004MR1115542
  11. [11] J.-L. Colliot-Thélène et J.-J. Sansuc, La R-équivalence sur les tores, Ann. Sci. Éc. Norm. Sup.10 (1977), 175-229. Zbl0356.14007MR450280
  12. [12] J.-L. Colliot-Thélène and J.-J. Sansuc, On the Chow groups of certain rational surfaces: a sequel to a paper of S. Bloch, Duke Math. J.48 (1981), 421-447. Zbl0479.14006MR620258
  13. [13] J.-L. Colliot-Thélène et J.-J. Sansuc, La descente sur les variétés rationnelles, II, Duke Math. J.54 (1987), 375-492. Zbl0659.14028MR899402
  14. [14] J.-L. Colliot-Thélène, J.-J. Sansuc et C. Soulé, Torsion dans le groupe de Chow de codimension deux, Duke Math. J.50 (1983), 763-801. Zbl0574.14004MR714830
  15. [15] J.-L. Colliot-Thélène, J.-J. Sansuc and Sir Peter Swinnerton-Dyer, Intersections of two quadrics and Châtelet surfaces, I, J. für die reine und angew. Math. (Crelle) 373 (1987) 37-107; II, ibid. 374 (1987) 72-168. Zbl0622.14029MR870307
  16. [16] J.-L. Colliot-Thélène and C. Scheiderer, Zero-cycles and cohomology on real algebraic varieties, à paraître dans Topology. Zbl0882.14016MR1380515
  17. [17] J.-L. Colliot-Thélène et A.N. Skorobogatov, Groupe de Chow des zéro-cycles sur les fibrés en quadriques, K-Theory7 (1993), 477-500. Zbl0837.14002MR1255062
  18. [18] J.-L. Colliot-Thélène and Sir Peter Swinnerton-Dyer, Hasse principle and weak approximation for pencils of Severi-Brauer varieties and similar varieties, Journal für die reine und angew. Math. (Crelle) 453 (1994), 49-112. Zbl0805.14010MR1285781
  19. [19] C.S. Dalawat, Groupe des classes de zéro-cycles sur les surfaces rationnelles définies sur un corps local, Thèse, Université de Paris-Sud, Juin 1993. 
  20. [20] M. Flach, A finiteness theorem for the symmetric square of an elliptic curve, Invent. math.109 (1992), 307-327. Zbl0781.14022MR1172693
  21. [21] W. Fulton, Intersection Theory, Ergeb. der Math. und ihrer Grenzgeb. Bd. 2, Springer-Verlag, Berlin, 1984. Zbl0541.14005MR732620
  22. [22] Ph. Gille, Un théorème de finitude arithmétique sur les groupes réductifs, C. R. Acad. Sc. Paris316 (1993), 701-704. Zbl0806.20036MR1214419
  23. [23] D. Harari, Méthode des fibrations et obstruction de Manin, Duke Math. J.75 (1994), 221-260. Zbl0847.14001MR1284820
  24. [24] K. Kato and S. Saito, Global class field theory of arithmetic schemes, Contemp. Math.55, vol. 1, 255-331. Zbl0614.14001MR862639
  25. [25] A. Langer and S. Saito, Torsion zero-cycles on the self-product of a modular elliptic curve, preprint 1994. Zbl0880.14001
  26. [26] S. Lichtenbaum, Duality theorems for curves over p-adic fields, Invent. math.7 (1969),120-136. Zbl0186.26402MR242831
  27. [27] Yu. I. Manin, Le groupe de Brauer-Grothendieck en géométrie diophantienne, in Actes Congrès intern. math. Nice, 1970, Tome I, 401-411. Zbl0239.14010MR427322
  28. [28] A.S. Merkur'ev and A.A. Suslin, K-cohomology of Severi-Brauer varieties and norm residue homomorphism, Izv. Akad. Nauk SSSR46 (1982) 1011-1146 = Math. USSR Izv.21 (1983) 307-341. Zbl0525.18008MR675529
  29. [29] S.J. Mildenhall, Cycles in a product of elliptic curves, and a group analogous to the class group, Duke Math. J.67 (1992), 387-406. Zbl0788.14004MR1177312
  30. [30] J.S. Milne, Arithmetic Duality Theorems, Perspectives in Math. vol. 1, Academic Press1986. Zbl0613.14019MR881804
  31. [31] R. Parimala and V. Suresh, Zero-cycles on quadric fibrations: Finiteness theorems and the cycle map, Invent. Math.122 (1995), 83-117. Zbl0865.14002MR1354955
  32. [32] W. Raskind, Torsion algebraic cycles on varieties over local fields, in Algebraic K-theory: Connections with Geometry and Topology, Lake Louise 1987, J.F. Jardine and V.P. Snaith ed., Kluwer Academic Publishers1989. Zbl0709.14005MR1045854
  33. [33] S. Saito, Some observations on motivic cohomology of arithmetic schemes, Invent. math.98 (1989), 371-404. Zbl0694.14005MR1016270
  34. [34] S. Saito, Cycle map on torsion algebraic cycles of codimension two, Invent. math.106 (1991), 443-460. Zbl0764.14004MR1134479
  35. [35] S. Saito and R. Sujatha, A finiteness theorem for cohomology of surfaces over p-adic fields and an application to Witt groups, in Algebraic K-Theory, Quadratic Forms and Central Simple Algebras, 1992 A. M. S. Summer Conference (Santa Barbara), B. Jacob and A. Rosenberg ed., Proc. Symposia in Pure Mathematics, Vol. 58, Part 2, 403-416. Zbl0820.14013MR1327311
  36. [36] P. Salberger, K-theory of orders and their Brauer-Severi schemes, Thèse, Université de Göteborg, 1985. 
  37. [37] P. Salberger, Galois descent and class groups of orders, in Orders and their applications, Oberwolfach 1984, I. Reiner and R. W. Roggenkamp ed., L. N. M. 1142, Springer-Verlag, 1985. Zbl0579.16002MR812503
  38. [38] P. Salberger, Zero-cycles on rational surfaces over number fields, Invent. math.91 (1988),505-524. Zbl0688.14008MR928495
  39. [39] P. Salberger, Chow groups of codimension two and l-adic realizations of motivic cohomology, in Séminaire de théorie des nombres, Paris 1991/1992, éd. Sinnou David, Progress in Mathematics116 (1993), 247-277. Zbl0833.14004MR1300892
  40. [40] J.-J. Sansuc, A propos d'une conjecture arithmétique sur le groupe de Chow d'une surface rationnelle, Séminaire de théorie des nombres, Bordeaux1981/1982, exp. 33. Zbl0538.14002MR695346
  41. [41] H. Shen, Monodromy and torsion algebraic cycles, Thèse, Arizona State University, Juillet 1993. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.