L'arithmétique du groupe de Chow des zéro-cycles
Journal de théorie des nombres de Bordeaux (1995)
- Volume: 7, Issue: 1, page 51-73
- ISSN: 1246-7405
Access Full Article
topHow to cite
topColliot-Thélène, Jean-Louis. "L'arithmétique du groupe de Chow des zéro-cycles." Journal de théorie des nombres de Bordeaux 7.1 (1995): 51-73. <http://eudml.org/doc/247669>.
@article{Colliot1995,
author = {Colliot-Thélène, Jean-Louis},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {zero cycles of degree zero; rational equivalence; Brauer group},
language = {fre},
number = {1},
pages = {51-73},
publisher = {Université Bordeaux I},
title = {L'arithmétique du groupe de Chow des zéro-cycles},
url = {http://eudml.org/doc/247669},
volume = {7},
year = {1995},
}
TY - JOUR
AU - Colliot-Thélène, Jean-Louis
TI - L'arithmétique du groupe de Chow des zéro-cycles
JO - Journal de théorie des nombres de Bordeaux
PY - 1995
PB - Université Bordeaux I
VL - 7
IS - 1
SP - 51
EP - 73
LA - fre
KW - zero cycles of degree zero; rational equivalence; Brauer group
UR - http://eudml.org/doc/247669
ER -
References
top- [1] S. Bloch, Torsion algebraic cycles, K2 and Brauer groups of function fields, in L.N.M. 844 (éd. M. Kervaire et M. Ojanguren) Springer1981. Zbl0467.12011
- [2] S. Bloch, On the Chow groups of certain rational surfaces, Ann. Sci. Ec. Norm. Sup.14 (1981), 41-59. Zbl0524.14006MR618730
- [3] S. Bloch, Algebraic K-theory, motives and algebraic cycles, Proceedings of the ICM, Kyoto, Japan 1990, Springer1991, Vol. 1, 43-54. Zbl0759.14001MR1159204
- [4] S. Bloch and A. Ogus, Gersten's conjecture and the homology of schemes, Ann. Sci. Éc. Norm. Sup.7 (1974), 181-202. Zbl0307.14008MR412191
- [5] S. Bloch and V. Srinivas, Remarks on correspondences and algebraic cycles, Am. J. Math.105 (1983), 1235-1253. Zbl0525.14003MR714776
- [6] J.W.S. Cassels, Arithmetic on curves of genus 1 (VII). The dual exact sequence, J. für die reine und angew. Math. (Crelle) 216 (1964), 150-158. Zbl0146.42304MR169849
- [7] J.-L. Colliot-Thélène, Hilbert's theorem 90 for K2, with application to the Chow groups of rational surfaces, Invent. math.71 (1983), 1-20. Zbl0527.14011MR688259
- [8] J.-L. Colliot-Thélène, Cycles algébriques de torsion et K-théorie algébrique, in Arithmetical Algebraic Geometry, C.I.M.E. 1991, E. Ballico ed., L. N. M. 1553, Springer-Verlag, 1993. Zbl0806.14002MR1338859
- [9] J.-L. Colliot-Thélène et F. Ischebeck, L'équivalence, rationnelle sur les cycles de dimension zéro des variétés algébriques réelles, C. R. Acad. Sc. Paris292 (1981), 723-725. Zbl0472.14016MR618896
- [10] J.-L. Colliot-Thélène et W. Raskind, Groupe de Chow de codimension deux des variétés définies sur un corps de nombres: un théorème de finitude pour la torsion, Invent. math.105 (1991), 221-245. Zbl0752.14004MR1115542
- [11] J.-L. Colliot-Thélène et J.-J. Sansuc, La R-équivalence sur les tores, Ann. Sci. Éc. Norm. Sup.10 (1977), 175-229. Zbl0356.14007MR450280
- [12] J.-L. Colliot-Thélène and J.-J. Sansuc, On the Chow groups of certain rational surfaces: a sequel to a paper of S. Bloch, Duke Math. J.48 (1981), 421-447. Zbl0479.14006MR620258
- [13] J.-L. Colliot-Thélène et J.-J. Sansuc, La descente sur les variétés rationnelles, II, Duke Math. J.54 (1987), 375-492. Zbl0659.14028MR899402
- [14] J.-L. Colliot-Thélène, J.-J. Sansuc et C. Soulé, Torsion dans le groupe de Chow de codimension deux, Duke Math. J.50 (1983), 763-801. Zbl0574.14004MR714830
- [15] J.-L. Colliot-Thélène, J.-J. Sansuc and Sir Peter Swinnerton-Dyer, Intersections of two quadrics and Châtelet surfaces, I, J. für die reine und angew. Math. (Crelle) 373 (1987) 37-107; II, ibid. 374 (1987) 72-168. Zbl0622.14029MR870307
- [16] J.-L. Colliot-Thélène and C. Scheiderer, Zero-cycles and cohomology on real algebraic varieties, à paraître dans Topology. Zbl0882.14016MR1380515
- [17] J.-L. Colliot-Thélène et A.N. Skorobogatov, Groupe de Chow des zéro-cycles sur les fibrés en quadriques, K-Theory7 (1993), 477-500. Zbl0837.14002MR1255062
- [18] J.-L. Colliot-Thélène and Sir Peter Swinnerton-Dyer, Hasse principle and weak approximation for pencils of Severi-Brauer varieties and similar varieties, Journal für die reine und angew. Math. (Crelle) 453 (1994), 49-112. Zbl0805.14010MR1285781
- [19] C.S. Dalawat, Groupe des classes de zéro-cycles sur les surfaces rationnelles définies sur un corps local, Thèse, Université de Paris-Sud, Juin 1993.
- [20] M. Flach, A finiteness theorem for the symmetric square of an elliptic curve, Invent. math.109 (1992), 307-327. Zbl0781.14022MR1172693
- [21] W. Fulton, Intersection Theory, Ergeb. der Math. und ihrer Grenzgeb. Bd. 2, Springer-Verlag, Berlin, 1984. Zbl0541.14005MR732620
- [22] Ph. Gille, Un théorème de finitude arithmétique sur les groupes réductifs, C. R. Acad. Sc. Paris316 (1993), 701-704. Zbl0806.20036MR1214419
- [23] D. Harari, Méthode des fibrations et obstruction de Manin, Duke Math. J.75 (1994), 221-260. Zbl0847.14001MR1284820
- [24] K. Kato and S. Saito, Global class field theory of arithmetic schemes, Contemp. Math.55, vol. 1, 255-331. Zbl0614.14001MR862639
- [25] A. Langer and S. Saito, Torsion zero-cycles on the self-product of a modular elliptic curve, preprint 1994. Zbl0880.14001
- [26] S. Lichtenbaum, Duality theorems for curves over p-adic fields, Invent. math.7 (1969),120-136. Zbl0186.26402MR242831
- [27] Yu. I. Manin, Le groupe de Brauer-Grothendieck en géométrie diophantienne, in Actes Congrès intern. math. Nice, 1970, Tome I, 401-411. Zbl0239.14010MR427322
- [28] A.S. Merkur'ev and A.A. Suslin, K-cohomology of Severi-Brauer varieties and norm residue homomorphism, Izv. Akad. Nauk SSSR46 (1982) 1011-1146 = Math. USSR Izv.21 (1983) 307-341. Zbl0525.18008MR675529
- [29] S.J. Mildenhall, Cycles in a product of elliptic curves, and a group analogous to the class group, Duke Math. J.67 (1992), 387-406. Zbl0788.14004MR1177312
- [30] J.S. Milne, Arithmetic Duality Theorems, Perspectives in Math. vol. 1, Academic Press1986. Zbl0613.14019MR881804
- [31] R. Parimala and V. Suresh, Zero-cycles on quadric fibrations: Finiteness theorems and the cycle map, Invent. Math.122 (1995), 83-117. Zbl0865.14002MR1354955
- [32] W. Raskind, Torsion algebraic cycles on varieties over local fields, in Algebraic K-theory: Connections with Geometry and Topology, Lake Louise 1987, J.F. Jardine and V.P. Snaith ed., Kluwer Academic Publishers1989. Zbl0709.14005MR1045854
- [33] S. Saito, Some observations on motivic cohomology of arithmetic schemes, Invent. math.98 (1989), 371-404. Zbl0694.14005MR1016270
- [34] S. Saito, Cycle map on torsion algebraic cycles of codimension two, Invent. math.106 (1991), 443-460. Zbl0764.14004MR1134479
- [35] S. Saito and R. Sujatha, A finiteness theorem for cohomology of surfaces over p-adic fields and an application to Witt groups, in Algebraic K-Theory, Quadratic Forms and Central Simple Algebras, 1992 A. M. S. Summer Conference (Santa Barbara), B. Jacob and A. Rosenberg ed., Proc. Symposia in Pure Mathematics, Vol. 58, Part 2, 403-416. Zbl0820.14013MR1327311
- [36] P. Salberger, K-theory of orders and their Brauer-Severi schemes, Thèse, Université de Göteborg, 1985.
- [37] P. Salberger, Galois descent and class groups of orders, in Orders and their applications, Oberwolfach 1984, I. Reiner and R. W. Roggenkamp ed., L. N. M. 1142, Springer-Verlag, 1985. Zbl0579.16002MR812503
- [38] P. Salberger, Zero-cycles on rational surfaces over number fields, Invent. math.91 (1988),505-524. Zbl0688.14008MR928495
- [39] P. Salberger, Chow groups of codimension two and l-adic realizations of motivic cohomology, in Séminaire de théorie des nombres, Paris 1991/1992, éd. Sinnou David, Progress in Mathematics116 (1993), 247-277. Zbl0833.14004MR1300892
- [40] J.-J. Sansuc, A propos d'une conjecture arithmétique sur le groupe de Chow d'une surface rationnelle, Séminaire de théorie des nombres, Bordeaux1981/1982, exp. 33. Zbl0538.14002MR695346
- [41] H. Shen, Monodromy and torsion algebraic cycles, Thèse, Arizona State University, Juillet 1993.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.