Arithmetic of 0-cycles on varieties defined over number fields
Annales scientifiques de l'École Normale Supérieure (2013)
- Volume: 46, Issue: 1, page 35-56
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topLiang, Yongqi. "Arithmetic of 0-cycles on varieties defined over number fields." Annales scientifiques de l'École Normale Supérieure 46.1 (2013): 35-56. <http://eudml.org/doc/272186>.
@article{Liang2013,
abstract = {Let $X$ be a rationally connected algebraic variety, defined over a number field $k.$ We find a relation between the arithmetic of rational points on $X$ and the arithmetic of zero-cycles. More precisely, we consider the following statements: (1) the Brauer-Manin obstruction is the only obstruction to weak approximation for $K$-rational points on $X_K$ for all finite extensions $K/k;$ (2) the Brauer-Manin obstruction is the only obstruction to weak approximation in some sense that we define for zero-cycles of degree $1$ on $X_K$ for all finite extensions $K/k;$ (3) the sequence\[\varprojlim \_n CH\_0(X\_K)/n\rightarrow \prod \_\{w\in \Omega \_K\}\varprojlim \_nCH\_0^\{\prime \}(X\_\{K\_w\})/n\rightarrow \mathrm \{Hom\}(\mathrm \{Br\}(X\_K),\mathbb \{Q\}/\mathbb \{Z\})\]is exact for all finite extensions $K/k.$ We prove that (1) implies (2), and that (2) and (3) are equivalent. We also prove a similar implication for the Hasse principle.
As an application, we prove the exactness of the sequence above for smooth compactifications of certain homogeneous spaces of linear algebraic groups.},
author = {Liang, Yongqi},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {zero-cycles; Hasse principle; weak approximation; Brauer-Manin obstruction; rationally connected varieties; homogeneous spaces},
language = {eng},
number = {1},
pages = {35-56},
publisher = {Société mathématique de France},
title = {Arithmetic of 0-cycles on varieties defined over number fields},
url = {http://eudml.org/doc/272186},
volume = {46},
year = {2013},
}
TY - JOUR
AU - Liang, Yongqi
TI - Arithmetic of 0-cycles on varieties defined over number fields
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2013
PB - Société mathématique de France
VL - 46
IS - 1
SP - 35
EP - 56
AB - Let $X$ be a rationally connected algebraic variety, defined over a number field $k.$ We find a relation between the arithmetic of rational points on $X$ and the arithmetic of zero-cycles. More precisely, we consider the following statements: (1) the Brauer-Manin obstruction is the only obstruction to weak approximation for $K$-rational points on $X_K$ for all finite extensions $K/k;$ (2) the Brauer-Manin obstruction is the only obstruction to weak approximation in some sense that we define for zero-cycles of degree $1$ on $X_K$ for all finite extensions $K/k;$ (3) the sequence\[\varprojlim _n CH_0(X_K)/n\rightarrow \prod _{w\in \Omega _K}\varprojlim _nCH_0^{\prime }(X_{K_w})/n\rightarrow \mathrm {Hom}(\mathrm {Br}(X_K),\mathbb {Q}/\mathbb {Z})\]is exact for all finite extensions $K/k.$ We prove that (1) implies (2), and that (2) and (3) are equivalent. We also prove a similar implication for the Hasse principle.
As an application, we prove the exactness of the sequence above for smooth compactifications of certain homogeneous spaces of linear algebraic groups.
LA - eng
KW - zero-cycles; Hasse principle; weak approximation; Brauer-Manin obstruction; rationally connected varieties; homogeneous spaces
UR - http://eudml.org/doc/272186
ER -
References
top- [1] M. Borovoi, The Brauer-Manin obstructions for homogeneous spaces with connected or abelian stabilizer, J. reine angew. Math. 473 (1996), 181–194. Zbl0844.14020MR1390687
- [2] M. Borovoi, J.-L. Colliot-Thélène & A. Skorobogatov, The elementary obstruction and homogeneous spaces, J. Duke Math.141 (2008), 321–364. Zbl1135.14013MR2376817
- [3] M. Borovoi & C. Demarche, Manin obstruction to strong approximation for homogeneous spaces, Comm. Math. Helv.88 (2013), 1–54. Zbl1271.14073MR3008912
- [4] J.-L. Colliot-Thélène, L’arithmétique du groupe de Chow des zéro-cycles, J. Théorie des nombres de Bordeaux7 (1995), 51–73. MR1413566
- [5] J.-L. Colliot-Thélène, Conjectures de type local-global sur l’image de l’application cycle en cohomologie étale, in Algebraic K-Theory (W. Raskind & C. Weibel, éds.), Proc. Symp. Pure Math. 67, Amer. Math. Soc., 1999, 1–12. MR1743234
- [6] J.-L. Colliot-Thélène, Un théorème de finitude pour le groupe de Chow des zéro-cycles d’un groupe algébrique linéaire sur un corps -adique, Invent. math. 159 (2005), 589–606. MR2125734
- [7] J.-L. Colliot-Thélène, Zéro-cycles de degré 1 sur les solides de Poonen, Bull. Soc. math. France 138 (2010), 249–257. MR2679040
- [8] J.-L. Colliot-Thélène & F. Ischebeck, L’équivalence rationnelle sur les cycles de dimension zéro des variétés algébriques réelles, C.R.A.S. Paris292 (1981), 723–725. Zbl0472.14016MR618896
- [9] J.-L. Colliot-Thélène & W. Raskind, -cohomology and the second Chow group, Math. Annalen270 (1985), 165–199. Zbl0536.14004MR771978
- [10] J.-L. Colliot-Thélène & J.-J. Sansuc, La descente sur une variété rationnelle définie sur un corps de nombres, C.R.A.S. Paris284 (1977), 1215–1218. Zbl0349.14015MR447250
- [11] J.-L. Colliot-Thélène & J.-J. Sansuc, On the Chow groups of certain rational surfaces: a sequel to a paper of S. Bloch, Duke Math. J.48 (1981), 421–447. Zbl0479.14006MR620258
- [12] J.-L. Colliot-Thélène, J.-J. Sansuc & S. P. Swinnerton-Dyer, Intersections of two quadrics and Châtelet surfaces II, J. reine angew. Math. 374 (1987), 72–168. Zbl0622.14030MR876222
- [13] J.-L. Colliot-Thélène, A. Skorobogatov & S. P. Swinnerton-Dyer, Rational points and zero-cycles on fibred varieties: Schinzel’s hypothesis and Salberger’s device, J. reine angew. Math. 495 (1998), 1–28. Zbl0883.11029MR1603908
- [14] J.-L. Colliot-Thélène & S. P. Swinnerton-Dyer, Hasse principle and weak approximation for pencils of Severi-Brauer and similar varieties, J. reine angew. Math. 453 (1994), 49–112. Zbl0805.14010MR1285781
- [15] O. Debarre, Higher-dimensional algebraic geometry, Universitext, Springer, 2001. MR1841091
- [16] T. Ekedahl, An effective version of Hilbert’s irreducibility theorem, in Séminaire de théorie des nombres de Paris 1988-1989 (C. Goldstein, éd.), Progress in Math. 91, Birkhäuser, 1990, 241–248. MR1104709
- [17] D. Eriksson & V. Scharaschkin, On the Brauer-Manin obstruction for zero-cycles on curves, Acta Arithmetica 135.2 (2008), 99–110. Zbl1169.14021MR2453526
- [18] M. Florence, Zéro-cycles de degré un sur les espaces homogènes, Int. Math. Res. Not.2004 (2004), 2898–2914. MR2097288
- [19] E. Frossard, Obstruction de Brauer-Manin pour les zéro-cycles sur des fibrations en variétés de Severi-Brauer, J. reine angew. Math. 557 (2003), 81–101. Zbl1098.14015MR1978403
- [20] A. Grothendieck, Le groupe de Brauer: I, II, III, in Dix exposés sur la cohomologie des schémas, North-Holland, 1968, 46–188. MR244269
- [21] J. van Hamel, The Brauer-Manin obstruction for zero-cycles on Severi-Brauer fibrations over curves, J. London Math. Soc.68 (2003), 317–337. Zbl1083.14024MR1994685
- [22] D. Harari, Méthode des fibrations et obstruction de Manin, J. Duke Math.75 (1994), 221–260. Zbl0847.14001MR1284820
- [23] D. Harari, Flèches de spécialisations en cohomologie étale et applications arithmétiques, Bull. Soc. Math. France125 (1997), 143–166. MR1478028
- [24] D. Harari, Weak approximation and non-Abelian fundamental groups, Ann. Scient. Éc. Norm. Sup. 33 (2000), 467–484. Zbl1073.14522MR1832820
- [25] B. Hassett, A. Várilly-Alvarado & P. Varilly, Transcendental obstructions to weak approximation on general K3 surfaces, Advances in Math.228 (2011), 1377–1404. Zbl1228.14030MR2824558
- [26] K. Kato & S. Saito, Global class field theory of arithmetic schemes, Contemporary Math.55 (1986), 255–331. MR862639
- [27] J. Kollár, Rational curves on algebraic varieties, Ergebnisse Math. Grenzg., Springer, 1996. Zbl0877.14012
- [28] J. Kollár & E. Szabó, Rationally connected varieties over finite fields, Duke Math. J.120 (2003), 251–267. Zbl1077.14068MR2019976
- [29] Y. Liang, Astuce de Salberger et zéro-cycles sur certaines fibrations, Int. Math. Res. Not 2012 (2012), doi:10.1093/imrn/rns003. MR3021795
- [30] Y. Liang, Principe local-global pour les zéro-cycles sur certaines fibrations au-dessus d’une courbe: I, Math. Annalen353 (2012), 1377–1398. MR2944033
- [31] Y. Liang, Principe local-global pour les zéro-cycles sur certaines fibrations au-dessus de l’espace projectif, to appear in Bull. Soc. Math. France.
- [32] D. Loughran, Existence of zero cycles of degree one vs existence of rational points, http://mathoverflow.net/questions/33774/, 2010.
- [33] Y. Manin, Le groupe de Brauer-Grothendieck en géométrie diophantienne, in Actes du Congrès Intern. Math. (Nice 1970), 1, Gauthiers-Villars, 1971, 401–411. MR427322
- [34] E. Peyre, Obstructions au principe de Hasse et à l’approximation faible, Séminaire Bourbaki vol. 2003/04, exp. no 931, Astérisque 299 (2005), 165–193. MR2167206
- [35] B. Poonen, Insufficiency of the Brauer-Manin obstruction applied to étale covers, Ann. of Math. 171(3) (2010), 2157–2169. Zbl1284.11096MR2680407
- [36] S. Saito, Some observations on motivic cohomology of arithmetic schemes, Invent. math. 98 (1989), 371–404. Zbl0694.14005MR1016270
- [37] J-P. Serre, Corps locaux, Hermann, 1968. MR354618
- [38] A. Skorobogatov, Beyond the Manin obstruction, Invent. Math.135 (1999), 399–424. Zbl0951.14013MR1666779
- [39] A. Skorobogatov, Torsors and rational points, Cambridge Univ. Press, 2001. MR1845760
- [40] O. Wittenberg, Transcendental Brauer-Manin obstruction on a pencil of elliptic curves, in Arithmetic of higher-dimensional varieties (Palo Alto, CA, 2002) (B. Poonen & Y. Tschinkel, éds.), Progress in Math. 226, Birkhäuser, 2004, 259–267. Zbl1173.11336MR2029873
- [41] O. Wittenberg, Intersections de deux quadriques et pinceaux de courbes de genre 1, Lecture Notes in Math. 1901, Springer, 2007. MR2307807
- [42] O. Wittenberg, On Albanese torsors and the elementary obstruction, Math. Annalen340 (2008), 805–838. Zbl1135.14014MR2372739
- [43] O. Wittenberg, Zéro-cycles sur les fibrations au-dessus d’une courbe de genre quelconque, Duke Math. Journal161 (2012), 2113–2166. Zbl1248.14030MR2957699
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.