Arithmetic of 0-cycles on varieties defined over number fields

Yongqi Liang

Annales scientifiques de l'École Normale Supérieure (2013)

  • Volume: 46, Issue: 1, page 35-56
  • ISSN: 0012-9593

Abstract

top
Let X be a rationally connected algebraic variety, defined over a number field k . We find a relation between the arithmetic of rational points on  X and the arithmetic of zero-cycles. More precisely, we consider the following statements: (1) the Brauer-Manin obstruction is the only obstruction to weak approximation for  K -rational points on  X K for all finite extensions K / k ; (2) the Brauer-Manin obstruction is the only obstruction to weak approximation in some sense that we define for zero-cycles of degree 1 on  X K for all finite extensions K / k ; (3) the sequence lim n C H 0 ( X K ) / n w Ω K lim n C H 0 ' ( X K w ) / n Hom ( Br ( X K ) , / ) is exact for all finite extensions K / k . We prove that (1) implies (2), and that (2) and (3) are equivalent. We also prove a similar implication for the Hasse principle. As an application, we prove the exactness of the sequence above for smooth compactifications of certain homogeneous spaces of linear algebraic groups.

How to cite

top

Liang, Yongqi. "Arithmetic of 0-cycles on varieties defined over number fields." Annales scientifiques de l'École Normale Supérieure 46.1 (2013): 35-56. <http://eudml.org/doc/272186>.

@article{Liang2013,
abstract = {Let $X$ be a rationally connected algebraic variety, defined over a number field $k.$ We find a relation between the arithmetic of rational points on $X$ and the arithmetic of zero-cycles. More precisely, we consider the following statements: (1) the Brauer-Manin obstruction is the only obstruction to weak approximation for $K$-rational points on $X_K$ for all finite extensions $K/k;$ (2) the Brauer-Manin obstruction is the only obstruction to weak approximation in some sense that we define for zero-cycles of degree $1$ on $X_K$ for all finite extensions $K/k;$ (3) the sequence\[\varprojlim \_n CH\_0(X\_K)/n\rightarrow \prod \_\{w\in \Omega \_K\}\varprojlim \_nCH\_0^\{\prime \}(X\_\{K\_w\})/n\rightarrow \mathrm \{Hom\}(\mathrm \{Br\}(X\_K),\mathbb \{Q\}/\mathbb \{Z\})\]is exact for all finite extensions $K/k.$ We prove that (1) implies (2), and that (2) and (3) are equivalent. We also prove a similar implication for the Hasse principle. As an application, we prove the exactness of the sequence above for smooth compactifications of certain homogeneous spaces of linear algebraic groups.},
author = {Liang, Yongqi},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {zero-cycles; Hasse principle; weak approximation; Brauer-Manin obstruction; rationally connected varieties; homogeneous spaces},
language = {eng},
number = {1},
pages = {35-56},
publisher = {Société mathématique de France},
title = {Arithmetic of 0-cycles on varieties defined over number fields},
url = {http://eudml.org/doc/272186},
volume = {46},
year = {2013},
}

TY - JOUR
AU - Liang, Yongqi
TI - Arithmetic of 0-cycles on varieties defined over number fields
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2013
PB - Société mathématique de France
VL - 46
IS - 1
SP - 35
EP - 56
AB - Let $X$ be a rationally connected algebraic variety, defined over a number field $k.$ We find a relation between the arithmetic of rational points on $X$ and the arithmetic of zero-cycles. More precisely, we consider the following statements: (1) the Brauer-Manin obstruction is the only obstruction to weak approximation for $K$-rational points on $X_K$ for all finite extensions $K/k;$ (2) the Brauer-Manin obstruction is the only obstruction to weak approximation in some sense that we define for zero-cycles of degree $1$ on $X_K$ for all finite extensions $K/k;$ (3) the sequence\[\varprojlim _n CH_0(X_K)/n\rightarrow \prod _{w\in \Omega _K}\varprojlim _nCH_0^{\prime }(X_{K_w})/n\rightarrow \mathrm {Hom}(\mathrm {Br}(X_K),\mathbb {Q}/\mathbb {Z})\]is exact for all finite extensions $K/k.$ We prove that (1) implies (2), and that (2) and (3) are equivalent. We also prove a similar implication for the Hasse principle. As an application, we prove the exactness of the sequence above for smooth compactifications of certain homogeneous spaces of linear algebraic groups.
LA - eng
KW - zero-cycles; Hasse principle; weak approximation; Brauer-Manin obstruction; rationally connected varieties; homogeneous spaces
UR - http://eudml.org/doc/272186
ER -

References

top
  1. [1] M. Borovoi, The Brauer-Manin obstructions for homogeneous spaces with connected or abelian stabilizer, J. reine angew. Math. 473 (1996), 181–194. Zbl0844.14020MR1390687
  2. [2] M. Borovoi, J.-L. Colliot-Thélène & A. Skorobogatov, The elementary obstruction and homogeneous spaces, J. Duke Math.141 (2008), 321–364. Zbl1135.14013MR2376817
  3. [3] M. Borovoi & C. Demarche, Manin obstruction to strong approximation for homogeneous spaces, Comm. Math. Helv.88 (2013), 1–54. Zbl1271.14073MR3008912
  4. [4] J.-L. Colliot-Thélène, L’arithmétique du groupe de Chow des zéro-cycles, J. Théorie des nombres de Bordeaux7 (1995), 51–73. MR1413566
  5. [5] J.-L. Colliot-Thélène, Conjectures de type local-global sur l’image de l’application cycle en cohomologie étale, in Algebraic K-Theory (W. Raskind & C. Weibel, éds.), Proc. Symp. Pure Math. 67, Amer. Math. Soc., 1999, 1–12. MR1743234
  6. [6] J.-L. Colliot-Thélène, Un théorème de finitude pour le groupe de Chow des zéro-cycles d’un groupe algébrique linéaire sur un corps p -adique, Invent. math. 159 (2005), 589–606. MR2125734
  7. [7] J.-L. Colliot-Thélène, Zéro-cycles de degré 1 sur les solides de Poonen, Bull. Soc. math. France 138 (2010), 249–257. MR2679040
  8. [8] J.-L. Colliot-Thélène & F. Ischebeck, L’équivalence rationnelle sur les cycles de dimension zéro des variétés algébriques réelles, C.R.A.S. Paris292 (1981), 723–725. Zbl0472.14016MR618896
  9. [9] J.-L. Colliot-Thélène & W. Raskind, k 2 -cohomology and the second Chow group, Math. Annalen270 (1985), 165–199. Zbl0536.14004MR771978
  10. [10] J.-L. Colliot-Thélène & J.-J. Sansuc, La descente sur une variété rationnelle définie sur un corps de nombres, C.R.A.S. Paris284 (1977), 1215–1218. Zbl0349.14015MR447250
  11. [11] J.-L. Colliot-Thélène & J.-J. Sansuc, On the Chow groups of certain rational surfaces: a sequel to a paper of S. Bloch, Duke Math. J.48 (1981), 421–447. Zbl0479.14006MR620258
  12. [12] J.-L. Colliot-Thélène, J.-J. Sansuc & S. P. Swinnerton-Dyer, Intersections of two quadrics and Châtelet surfaces II, J. reine angew. Math. 374 (1987), 72–168. Zbl0622.14030MR876222
  13. [13] J.-L. Colliot-Thélène, A. Skorobogatov & S. P. Swinnerton-Dyer, Rational points and zero-cycles on fibred varieties: Schinzel’s hypothesis and Salberger’s device, J. reine angew. Math. 495 (1998), 1–28. Zbl0883.11029MR1603908
  14. [14] J.-L. Colliot-Thélène & S. P. Swinnerton-Dyer, Hasse principle and weak approximation for pencils of Severi-Brauer and similar varieties, J. reine angew. Math. 453 (1994), 49–112. Zbl0805.14010MR1285781
  15. [15] O. Debarre, Higher-dimensional algebraic geometry, Universitext, Springer, 2001. MR1841091
  16. [16] T. Ekedahl, An effective version of Hilbert’s irreducibility theorem, in Séminaire de théorie des nombres de Paris 1988-1989 (C. Goldstein, éd.), Progress in Math. 91, Birkhäuser, 1990, 241–248. MR1104709
  17. [17] D. Eriksson & V. Scharaschkin, On the Brauer-Manin obstruction for zero-cycles on curves, Acta Arithmetica 135.2 (2008), 99–110. Zbl1169.14021MR2453526
  18. [18] M. Florence, Zéro-cycles de degré un sur les espaces homogènes, Int. Math. Res. Not.2004 (2004), 2898–2914. MR2097288
  19. [19] E. Frossard, Obstruction de Brauer-Manin pour les zéro-cycles sur des fibrations en variétés de Severi-Brauer, J. reine angew. Math. 557 (2003), 81–101. Zbl1098.14015MR1978403
  20. [20] A. Grothendieck, Le groupe de Brauer: I, II, III, in Dix exposés sur la cohomologie des schémas, North-Holland, 1968, 46–188. MR244269
  21. [21] J. van Hamel, The Brauer-Manin obstruction for zero-cycles on Severi-Brauer fibrations over curves, J. London Math. Soc.68 (2003), 317–337. Zbl1083.14024MR1994685
  22. [22] D. Harari, Méthode des fibrations et obstruction de Manin, J. Duke Math.75 (1994), 221–260. Zbl0847.14001MR1284820
  23. [23] D. Harari, Flèches de spécialisations en cohomologie étale et applications arithmétiques, Bull. Soc. Math. France125 (1997), 143–166. MR1478028
  24. [24] D. Harari, Weak approximation and non-Abelian fundamental groups, Ann. Scient. Éc. Norm. Sup. 33 (2000), 467–484. Zbl1073.14522MR1832820
  25. [25] B. Hassett, A. Várilly-Alvarado & P. Varilly, Transcendental obstructions to weak approximation on general K3 surfaces, Advances in Math.228 (2011), 1377–1404. Zbl1228.14030MR2824558
  26. [26] K. Kato & S. Saito, Global class field theory of arithmetic schemes, Contemporary Math.55 (1986), 255–331. MR862639
  27. [27] J. Kollár, Rational curves on algebraic varieties, Ergebnisse Math. Grenzg., Springer, 1996. Zbl0877.14012
  28. [28] J. Kollár & E. Szabó, Rationally connected varieties over finite fields, Duke Math. J.120 (2003), 251–267. Zbl1077.14068MR2019976
  29. [29] Y. Liang, Astuce de Salberger et zéro-cycles sur certaines fibrations, Int. Math. Res. Not 2012 (2012), doi:10.1093/imrn/rns003. MR3021795
  30. [30] Y. Liang, Principe local-global pour les zéro-cycles sur certaines fibrations au-dessus d’une courbe: I, Math. Annalen353 (2012), 1377–1398. MR2944033
  31. [31] Y. Liang, Principe local-global pour les zéro-cycles sur certaines fibrations au-dessus de l’espace projectif, to appear in Bull. Soc. Math. France. 
  32. [32] D. Loughran, Existence of zero cycles of degree one vs existence of rational points, http://mathoverflow.net/questions/33774/, 2010. 
  33. [33] Y. Manin, Le groupe de Brauer-Grothendieck en géométrie diophantienne, in Actes du Congrès Intern. Math. (Nice 1970), 1, Gauthiers-Villars, 1971, 401–411. MR427322
  34. [34] E. Peyre, Obstructions au principe de Hasse et à l’approximation faible, Séminaire Bourbaki vol. 2003/04, exp. no 931, Astérisque 299 (2005), 165–193. MR2167206
  35. [35] B. Poonen, Insufficiency of the Brauer-Manin obstruction applied to étale covers, Ann. of Math. 171(3) (2010), 2157–2169. Zbl1284.11096MR2680407
  36. [36] S. Saito, Some observations on motivic cohomology of arithmetic schemes, Invent. math. 98 (1989), 371–404. Zbl0694.14005MR1016270
  37. [37] J-P. Serre, Corps locaux, Hermann, 1968. MR354618
  38. [38] A. Skorobogatov, Beyond the Manin obstruction, Invent. Math.135 (1999), 399–424. Zbl0951.14013MR1666779
  39. [39] A. Skorobogatov, Torsors and rational points, Cambridge Univ. Press, 2001. MR1845760
  40. [40] O. Wittenberg, Transcendental Brauer-Manin obstruction on a pencil of elliptic curves, in Arithmetic of higher-dimensional varieties (Palo Alto, CA, 2002) (B. Poonen & Y. Tschinkel, éds.), Progress in Math. 226, Birkhäuser, 2004, 259–267. Zbl1173.11336MR2029873
  41. [41] O. Wittenberg, Intersections de deux quadriques et pinceaux de courbes de genre 1, Lecture Notes in Math. 1901, Springer, 2007. MR2307807
  42. [42] O. Wittenberg, On Albanese torsors and the elementary obstruction, Math. Annalen340 (2008), 805–838. Zbl1135.14014MR2372739
  43. [43] O. Wittenberg, Zéro-cycles sur les fibrations au-dessus d’une courbe de genre quelconque, Duke Math. Journal161 (2012), 2113–2166. Zbl1248.14030MR2957699

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.