Isoperimetric estimates for the first eigenvalue of the -Laplace operator and the Cheeger constant
Commentationes Mathematicae Universitatis Carolinae (2003)
- Volume: 44, Issue: 4, page 659-667
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topKawohl, Bernhard, and Fridman, V.. "Isoperimetric estimates for the first eigenvalue of the $p$-Laplace operator and the Cheeger constant." Commentationes Mathematicae Universitatis Carolinae 44.4 (2003): 659-667. <http://eudml.org/doc/249207>.
@article{Kawohl2003,
abstract = {First we recall a Faber-Krahn type inequality and an estimate for $\lambda _p(\Omega )$ in terms of the so-called Cheeger constant. Then we prove that the eigenvalue $\lambda _p(\Omega )$ converges to the Cheeger constant $h(\Omega )$ as $p\rightarrow 1$. The associated eigenfunction $u_p$ converges to the characteristic function of the Cheeger set, i.e. a subset of $\Omega $ which minimizes the ratio $|\partial D|/|D|$ among all simply connected $D\subset \subset \Omega $. As a byproduct we prove that for convex $\Omega $ the Cheeger set $\omega $ is also convex.},
author = {Kawohl, Bernhard, Fridman, V.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {isoperimetric estimates; eigenvalue; Cheeger constant; $p$-Laplace operator; $1$-Laplace operator; Faber-Krahn type inequality; eigenvalue for -Laplacian; Cheeger set; 1-Laplace operator},
language = {eng},
number = {4},
pages = {659-667},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Isoperimetric estimates for the first eigenvalue of the $p$-Laplace operator and the Cheeger constant},
url = {http://eudml.org/doc/249207},
volume = {44},
year = {2003},
}
TY - JOUR
AU - Kawohl, Bernhard
AU - Fridman, V.
TI - Isoperimetric estimates for the first eigenvalue of the $p$-Laplace operator and the Cheeger constant
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2003
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 44
IS - 4
SP - 659
EP - 667
AB - First we recall a Faber-Krahn type inequality and an estimate for $\lambda _p(\Omega )$ in terms of the so-called Cheeger constant. Then we prove that the eigenvalue $\lambda _p(\Omega )$ converges to the Cheeger constant $h(\Omega )$ as $p\rightarrow 1$. The associated eigenfunction $u_p$ converges to the characteristic function of the Cheeger set, i.e. a subset of $\Omega $ which minimizes the ratio $|\partial D|/|D|$ among all simply connected $D\subset \subset \Omega $. As a byproduct we prove that for convex $\Omega $ the Cheeger set $\omega $ is also convex.
LA - eng
KW - isoperimetric estimates; eigenvalue; Cheeger constant; $p$-Laplace operator; $1$-Laplace operator; Faber-Krahn type inequality; eigenvalue for -Laplacian; Cheeger set; 1-Laplace operator
UR - http://eudml.org/doc/249207
ER -
References
top- Alvino A., Ferone V., Trombetti G., On the properties of some nonlinear eigenvalues, SIAM J. Math. Anal. 29 (1998), 437-451. (1998) Zbl0908.35094MR1616519
- Bhattacharia T., A proof of the Faber-Krahn inequality for the first eigenvalue of the -Laplacian, Ann. Mat. Pura Appl. Ser. 4 177 (1999), 225-240. (1999) MR1747632
- Belloni M., Kawohl B., A direct uniqueness proof for equations involving the -Laplace operator, Manuscripta Math. 109 (2002), 229-231. (2002) Zbl1100.35032MR1935031
- Belloni M., Kawohl B., The pseudo--Laplace eigenvalue problem and viscosity solutions as , ESAIM COCV, to appear. Zbl1092.35074MR2084254
- Chavel I., Isoperimetric Inequalities. Differential Geometric and Analytic Perspectives, Cambridge University Press, Cambridge, 2001. Zbl0988.51019MR1849187
- Cheeger J., A lower bound for the smallest eigenvalue of the Laplacian, in: Problems in Analysis, A Symposium in Honor of Salomon Bochner, R.C. Gunning, Ed., Princeton Univ. Press, 1970, pp.195-199. Zbl0212.44903MR0402831
- Cicaclese M., Trombetti C., Asymptotic behaviour of solutions to -Laplacian equation, preprint No. 13, Univ. Napoli, 2002.
- Demengel F., Theorémès d’existence pour des équations avec l’opérateur -Laplacien, première valeur propre pour , C.R. Acad. Sci. Paris, Ser. I 334 (2002), 1071-1076. (2002) Zbl1142.35408MR1911649
- Fridman V., doctoral thesis, in preparation, .
- Giusti E., Minimal Surfaces and Functions of Bounded Variation, Birkhäuser Verlag, Basel, 1984. Zbl0825.49059MR0775682
- Gonzales E., Massari U., Tamanini I., On the regularity of boundaries of sets minimizing perimeter with a volume constraint, Indiana Univ. Math. J. 32 (1983), 25-37. (1983) MR0684753
- Huang Y.X., On the eigenvalues of the -Laplacian with varying , Proc. Amer. Math. Soc. 125 (1997), 3347-3354. (1997) Zbl0882.35087MR1403133
- Juutinen P., Lindqvist P., Manfredi J., The -eigenvalue problem, Arch. Ration. Mech. Anal. 148 (1999), 89-105. (1999) Zbl0947.35104MR1716563
- Kawohl B., Rearrangements and Convexity of Level Sets in PDE, Springer Lecture Notes in Math. 1150, 1985. Zbl0593.35002MR0810619
- Kawohl B., On a family of torsional creep problems, J. reine angew. Math. 410 (1990), 1-22. (1990) Zbl0701.35015MR1068797
- Kawohl B., Stará J., Wittum G., Analysis and numerical studies of a problem of shape design, Arch. Ration. Mech. Anal. 114 (1991), 349-363. (1991) MR1100800
- Kawohl B., Kutev N., Global behavior of solutions to a parabolic mean curvature equation, Differ. Integral Equations 8 (1995), 1923-1946. (1995) MR1348958
- Kawohl B., Some nonconvex shape optimization problems, in: Optimal Shape Design, B. Kawohl et al., Eds., Springer Lecture Notes in Math. 1740 (2000), 7-46. Zbl0982.49024MR1804684
- Lindqvist P., On non-linear Rayleigh quotients, Potential Anal. 2 (1993), 199-218. (1993)
- Lindqvist P., A note on the nonlinear Rayleigh quotient, in: Analysis, Algebra and Computers in Mathematical Research (Lulea 1992), M. Gyllenberg & L.E. Persson, Eds., Marcel Dekker Lecture Notes in Pure and Appl. Math. 156, 1994, pp. 223-231. Zbl0805.35085MR1280948
- Lindqvist P., On a nonlinear eigenvalue problem, Padova, 2000, pp. 79-110. Zbl0838.35094
- Lefton L., Wei D., Numerical approximation of the first eigenpair of the -Laplacian using finite elements and the penalty method, Numer. Funct. Anal. Optim. 18 (1997), 389-399. (1997) Zbl0884.65103MR1448898
- Matei A.M., First eigenvalue for the -Laplace operator, Nonlinear Anal. TMA 39 (2000), 1051-1061. (2000) Zbl0948.35090MR1735181
- Marcellini P., Miller K., Elliptic versus parabolic regularization for the equation of prescribed mean curvature, J. Differential Equations 137 (1997), 1-53. (1997) Zbl0890.35046MR1451535
- Payne L.E., Rayner M.E., An isoperimetric inequality for the first eigenfunction in the fixed membrane problem, Z. Angew. Math. Phys. 23 (1972), 13-15. (1972) Zbl0241.73080MR0313649
- Payne L.E., Rayner M.E., Some isoperimetric norm bound for solutions of the Helmholtz equation, Z. Angew. Math. Phys. 24 (1973), 105-110. (1973) MR0324202
- Sakaguchi S., Concavity properties of solutions to some degenerate quasilinear elliptic Dirichlet problems, Ann. Sci. Norm. Sup. Pisa (IV) 14 (1987), 404-421. (1987) Zbl0665.35025MR0951227
- Shirakawa K., Asymptotic convergence of -Laplace equations with constraints as tends to , Math. Methods Appl. Sci. 25 (2002), 771-793. (2002) MR1906858
- Stredulinsky E., Ziemer W.P., Area minimizing sets subject to a volume constraint in a convex set, J. Geom. Anal. 7 (1997), 653-677. (1997) Zbl0940.49025MR1669207
Citations in EuDML Documents
top- Jiří Benedikt, Estimates of the principal eigenvalue of the -Laplacian and the -biharmonic operator
- V. Caselles, M. Novaga, A. Chambolle, Some remarks on uniqueness and regularity of Cheeger sets
- V. Caselles, A. Chambolle, S. Moll, M. Novaga, A characterization of convex calibrable sets in with respect to anisotropic norms
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.