An estimation of the controllability time for single-input systems on compact Lie Groups
Andrei Agrachev; Thomas Chambrion
ESAIM: Control, Optimisation and Calculus of Variations (2006)
- Volume: 12, Issue: 3, page 409-441
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topAgrachev, Andrei, and Chambrion, Thomas. "An estimation of the controllability time for single-input systems on compact Lie Groups." ESAIM: Control, Optimisation and Calculus of Variations 12.3 (2006): 409-441. <http://eudml.org/doc/249680>.
@article{Agrachev2006,
abstract = {
Geometric control theory and Riemannian techniques are used to describe
the reachable set at time t of left invariant single-input control systems
on semi-simple compact Lie groups and to
estimate the minimal time needed to reach any point from identity.
This method provides an effective way to give an upper and a lower bound
for the minimal time needed to transfer a controlled quantum system
with a drift from a given initial position to a given final position.
The bounds include diameters of the flag manifolds; the latter are
also explicitly computed in the paper.
},
author = {Agrachev, Andrei, Chambrion, Thomas},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Control systems; semi-simple Lie groups; Riemannian
geometry. ; Riemannian geometry},
language = {eng},
month = {6},
number = {3},
pages = {409-441},
publisher = {EDP Sciences},
title = {An estimation of the controllability time for single-input systems on compact Lie Groups},
url = {http://eudml.org/doc/249680},
volume = {12},
year = {2006},
}
TY - JOUR
AU - Agrachev, Andrei
AU - Chambrion, Thomas
TI - An estimation of the controllability time for single-input systems on compact Lie Groups
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2006/6//
PB - EDP Sciences
VL - 12
IS - 3
SP - 409
EP - 441
AB -
Geometric control theory and Riemannian techniques are used to describe
the reachable set at time t of left invariant single-input control systems
on semi-simple compact Lie groups and to
estimate the minimal time needed to reach any point from identity.
This method provides an effective way to give an upper and a lower bound
for the minimal time needed to transfer a controlled quantum system
with a drift from a given initial position to a given final position.
The bounds include diameters of the flag manifolds; the latter are
also explicitly computed in the paper.
LA - eng
KW - Control systems; semi-simple Lie groups; Riemannian
geometry. ; Riemannian geometry
UR - http://eudml.org/doc/249680
ER -
References
top- J.F. Adams, Lectures on Lie groups. W.A. Benjamin, Inc., New York-Amsterdam (1969).
- A.A. Agrachev, Introduction to optimal control theory, in Mathematical control theory, Part 1, 2 (Trieste, 2001), ICTP Lect. Notes, VIII, Abdus Salam Int. Cent. Theoret. Phys., Trieste (2002) 453–513 (electronic).
- A.A. Agrachev and Y.L. Sachkov, Control theory from the geometric viewpoint, Encyclopaedia of Mathematical Sciences. 87 Springer-Verlag, Berlin (2004). Control Theory and Optimization, II.
- A.O. Barut and R. Raczka, Theory of group representations and applications. World Scientific Publishing Co., Singapore, second edn. (1986).
- B. Bonnard, V. Jurdjevic, I. Kupka and G. Sallet, Systèmes de champs de vecteurs transitifs sur les groupes de Lie semi-simples et leurs espaces homogènes, in Systems analysis (Conf., Bordeaux, 1978)75Astérisque, Soc. Math. France, Paris (1980) 19–45.
- B. Bonnard, V. Jurdjevic, I. Kupka and G. Sallet, Transitivity of families of invariant vector fields on the semidirect products of Lie groups. Trans. Amer. Math. Soc.271 (1982) 525–535.
- B. Bonnard, Couples de générateurs de certaines sous-algèbres de Lie de l'algèbre de Lie symplectique affine, et applications. Publ. Dép. Math. (Lyon) 15 (1978) 1–36.
- B. Bonnard, Contrôlabilité de systèmes mécaniques sur les groupes de Lie. SIAM J. Control Optim.22 (1984) 711–722.
- U. Boscain, T. Chambrion and J.-P. Gauthier, On the K + P problem for a three-level quantum system: optimality implies resonance. J. Dynam. Control Syst.8 (2002) 547–572.
- U. Boscain, G. Charlot and J.-P. Gauthier, Optimal control of the Schrödinger equation with two or three levels, in Nonlinear and adaptive control (Sheffield 2001), Springer, Berlin, Lect. Not. Control Inform. Sci.281 (2003) 33–43.
- U. Boscain, G. Charlot, J.-P. Gauthier, S. Guérin and H.-R. Jauslin, Optimal control in laser-induced population transfer for two- and three-level quantum systems. J. Math. Phys.43 (2002) 2107–2132.
- U. Boscain and G. Charlot, Resonance of minimizers for n-level quantum systems with an arbitrary cost. ESAIM: COCV10 (2004) 593–614.
- U. Boscain and Y. Chitour, On the minimum time problem for driftless left-invariant control systems on SO(2). Commun. Pure Appl. Anal.1 (2002) 285–312.
- R. Brockett, New issues in the mathematics of control, in Mathematics unlimited — 2001 and beyond. Springer, Berlin (2001), pp. 189–219.
- D. D'Allessandro and M. Dahleh, Optimal control of two-level quantum systems. IEEE Trans. Automat. Control46 (2001) 866–876.
- M.P. do Carmo, Riemannian geometry, Mathematics: Theory & Applications. Birkhäuser Boston Inc., Boston, MA (1992). Translated from the second Portuguese edition by Francis Flaherty.
- R. El Assoudi and J.-P. Gauthier, Controllability of right invariant systems on real simple Lie groups of type F4, G2, Cn, and Bn. Math. Control Signals Syst.1 (1988) 293–301.
- R. El Assoudi and J.-P. Gauthier, Controllability of right-invariant systems on semi-simple Lie groups, in New trends in nonlinear control theory (Nantes, 1988). Springer, Berlin, Lect. Notes Control Inform. Sci.122 (1989) 54–64.
- R. El Assoudi, J.P. Gauthier and I.A.K. Kupka, Controllability of right invariant systems on semi-simple Lie groups, in Geometry in nonlinear control and differential inclusions (Warsaw, 1993). Banach Center Publ., Polish Acad. Sci., Warsaw 32 (1995) 199–208.
- R. El Assoudi, J.P. Gauthier and I.A.K. Kupka, On subsemigroups of semisimple Lie groups. Ann. Inst. H. Poincaré Anal. Non Linéaire13 (1996) 117–133.
- R. El Assoudi and J.-P. Gauthier, Contrôlabilité sur l'espace quotient d'un groupe de Lie par un sous-groupe compact. C. R. Acad. Sci. Paris Sér. I Math.311 (1990) 189–191.
- A.L. Fradkov and A.N Churilov, Eds. Proceedings of the conference “Physics and Control” 2003 IEEE. August (2003).
- J.-P. Gauthier, I. Kupka and G. Sallet, Controllability of right invariant systems on real simple Lie groups. Syst. Contr. Lett.5 187–190 (1984).
- S. Helgason, Differential geometry, Lie groups, and symmetric spaces 80, Pure Appl. Math., Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1978).
- V. Jurdjevic, Optimal control problems on Lie groups: crossroads between geometry and mechanics, in Geometry of feedback and optimal control. Dekker, New York, Monogr. Textbooks Pure Appl. Math.207 (1998) 257–303.
- V. Jurdjevic, Optimal control, geometry, and mechanics, in Mathematical control theory. Springer, New York (1999) 227–267.
- V. Jurdjevic and I. Kupka, Control systems on semisimple Lie groups and their homogeneous spaces. Ann. Inst. Fourier (Grenoble)31 (1981) 151–179.
- V. Jurdjevic and I. Kupka, Control systems subordinated to a group action: accessibility. J. Differ. Equ.39 (1981) 186–211.
- V. Jurdjevic, Geometric control theory, Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge 52 (1997).
- V. Jurdjevic, Lie determined systems and optimal problems with symmetries, in Geometric control and non-holonomic mechanics (Mexico City, 1996), Providence, RI. CMS Conf. Proc., Amer. Math. Soc.25 (1998) 1–28.
- A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications. 54 Cambridge University Press, Cambridge (1995). With a supplementary chapter by Katok and Leonardo Mendoza.
- N. Khaneja, S.J. Glaser and R. Brockett, Sub-Riemannian geometry and time optimal control of three spin systems: quantum gates and coherence transfer. Phys. Rev. A65 (2002) 032301, 11.
- I. Kupka, Applications of semigroups to geometric control theory, in The analytical and topological theory of semigroupsde Gruyter Exp. Math. de Gruyter, Berlin 1 (1990) 337–345.
- J. Milnor, Morse theory. Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics Studies, No. 51. Princeton University Press, Princeton, N.J. (1963).
- J. Milnor, Curvatures of left invariant metrics on Lie groups. Advances Math.21 (1976) 293–329.
- T. Püttmann, Injectivity radius and diameter of the manifolds of flags in the projective planes. Math. Z.246 (2004) 795–809.
- Y.L. Sachkov, Controllability of invariant systems on Lie groups and homogeneous spaces. J. Math. Sci.100 (2000) 2355–2427 Dynamical systems, 8.
- H.J. Sussmann and V. Jurdjevic, Controllability of nonlinear systems. J. Differ. Equ.12 (1972) 95–116.
- V.S. Varadarajan, Lie groups, Lie algebras, and their representations. Prentice-Hall Inc., Englewood Cliffs, N.J. (1974). Prentice-Hall Series in Modern Analysis.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.