Bernstein and De Giorgi type problems: new results via a geometric approach

Alberto Farina; Berardino Sciunzi; Enrico Valdinoci

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2008)

  • Volume: 7, Issue: 4, page 741-791
  • ISSN: 0391-173X

Abstract

top
We use a Poincaré type formula and level set analysis to detect one-dimensional symmetry of stable solutions of possibly degenerate or singular elliptic equations of the form div a ( | u ( x ) | ) u ( x ) + f ( u ( x ) ) = 0 . Our setting is very general and, as particular cases, we obtain new proofs of a conjecture of De Giorgi for phase transitions in  2 and  3 and of the Bernstein problem on the flatness of minimal area graphs in  3 . A one-dimensional symmetry result in the half-space is also obtained as a byproduct of our analysis. Our approach is also flexible to very degenerate operators: as an application, we prove one-dimensional symmetry for  1 -Laplacian type operators.

How to cite

top

Farina, Alberto, Sciunzi, Berardino, and Valdinoci, Enrico. "Bernstein and De Giorgi type problems: new results via a geometric approach." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 7.4 (2008): 741-791. <http://eudml.org/doc/272280>.

@article{Farina2008,
abstract = {We use a Poincaré type formula and level set analysis to detect one-dimensional symmetry of stable solutions of possibly degenerate or singular elliptic equations of the form\[ \{\,\{\rm div\}\,\} \Big (a(|\nabla u(x)|) \nabla u(x)\Big )+f(u(x))=0.\]Our setting is very general and, as particular cases, we obtain new proofs of a conjecture of De Giorgi for phase transitions in $\mathbb \{R\}^2$ and $\mathbb \{R\}^3$ and of the Bernstein problem on the flatness of minimal area graphs in $\mathbb \{R\}^3$. A one-dimensional symmetry result in the half-space is also obtained as a byproduct of our analysis. Our approach is also flexible to very degenerate operators: as an application, we prove one-dimensional symmetry for $1$-Laplacian type operators.},
author = {Farina, Alberto, Sciunzi, Berardino, Valdinoci, Enrico},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Bernstein problem; De Giorgi problem; quasilinear elliptic equation},
language = {eng},
number = {4},
pages = {741-791},
publisher = {Scuola Normale Superiore, Pisa},
title = {Bernstein and De Giorgi type problems: new results via a geometric approach},
url = {http://eudml.org/doc/272280},
volume = {7},
year = {2008},
}

TY - JOUR
AU - Farina, Alberto
AU - Sciunzi, Berardino
AU - Valdinoci, Enrico
TI - Bernstein and De Giorgi type problems: new results via a geometric approach
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2008
PB - Scuola Normale Superiore, Pisa
VL - 7
IS - 4
SP - 741
EP - 791
AB - We use a Poincaré type formula and level set analysis to detect one-dimensional symmetry of stable solutions of possibly degenerate or singular elliptic equations of the form\[ {\,{\rm div}\,} \Big (a(|\nabla u(x)|) \nabla u(x)\Big )+f(u(x))=0.\]Our setting is very general and, as particular cases, we obtain new proofs of a conjecture of De Giorgi for phase transitions in $\mathbb {R}^2$ and $\mathbb {R}^3$ and of the Bernstein problem on the flatness of minimal area graphs in $\mathbb {R}^3$. A one-dimensional symmetry result in the half-space is also obtained as a byproduct of our analysis. Our approach is also flexible to very degenerate operators: as an application, we prove one-dimensional symmetry for $1$-Laplacian type operators.
LA - eng
KW - Bernstein problem; De Giorgi problem; quasilinear elliptic equation
UR - http://eudml.org/doc/272280
ER -

References

top
  1. [1] G. Alberti, L. Ambrosio and X. Cabré, On a long-standing conjecture of E. De Giorgi: symmetry in 3D for general nonlinearities and a local minimality property, Acta Appl. Math.65 (2001), 9–33. Zbl1121.35312MR1843784
  2. [2] L. Ambrosio and X. Cabré, Entire solutions of semilinear elliptic equations in 3 and a conjecture of De Giorgi, J. Amer. Math. Soc. 13 (2000) (electronic), 725–739. Zbl0968.35041MR1775735
  3. [3] H. Berestycki, L. Caffarelli and L. Nirenberg, Further qualitative properties for elliptic equations in unbounded domains, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25 (1997-1998), 69–94. Zbl1079.35513MR1655510
  4. [4] S. Bernstein, Über ein geometrisches Theorem und seine Anwendung auf die partiellen Differentialgleichungen vom elliptischen Typus, Math. Z.26 (1927), 551–558. Zbl53.0670.01MR1544873JFM53.0670.01
  5. [5] L. Caffarelli, N. Garofalo and F. Segàla, A gradient bound for entire solutions of quasi-linear equations and its consequences, Comm. Pure Appl. Math.47 (1994), 1457–1473. Zbl0819.35016MR1296785
  6. [6] L. Damascelli and B. Sciunzi, Regularity, monotonicity and symmetry of positive solutions of m -Laplace equations, J. Differential Equations206 (2004), 483–515. Zbl1108.35069MR2096703
  7. [7] D. Danielli and N. Garofalo, Properties of entire solutions of non-uniformly elliptic equations arising in geometry and in phase transitions, Calc. Var. Partial Differential Equations15 (2002), 451–491. Zbl1043.49018MR1942128
  8. [8] E. De Giorgi, Convergence problems for functionals and operators, In: “Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978)”, Bologna, 1979, 131–188, Pitagora Editrice. Zbl0405.49001MR533166
  9. [9] E. DiBenedetto, C 1 + α local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal.7 (1983), 827–850. Zbl0539.35027MR709038
  10. [10] L. C. Evans and R. F. Gariepy, “Measure theory and fine properties of functions”, Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992. Zbl0804.28001MR1158660
  11. [11] A. Farina, “Propriétés qualitatives de solutions d’équations et systèmes d’équations non-linéaires”, Habilitation à diriger des recherches, Paris VI, 2002. 
  12. [12] A. Farina, One-dimensional symmetry for solutions of quasilinear equations in 2 , Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat.6 (2003), 685–692. Zbl1115.35045MR2014827
  13. [13] A. Farina, Liouville-type theorems for elliptic problems, In: “Handbook of Differential Equations: Stationary Partial Differential Equations” M. Chipot (ed.), Vol. IV Elsevier B. V., Amsterdam, 2007, 61–116. Zbl1191.35128MR2569331
  14. [14] A. Farina, B. Sciunzi and E. Valdinoci, Bernstein and De Giorgi type problems: new results via a geometric approach, Preliminary version of this paper, available at http://cvgmt.sns.it/papers/, 2007. Zbl1180.35251MR2483642
  15. [15] A. Farina and E. Valdinoci, 1 D symmetry for solutions of semilinear and quasilinear elliptic equations, Preprint, 2008. Zbl1228.35105MR2413100
  16. [16] D. Fischer-Colbrie and R. Schoen, The structure of complete stable minimal surfaces in 3 -manifolds of nonnegative scalar curvature, Comm. Pure Appl. Math.33 (1980), 199–211. Zbl0439.53060MR562550
  17. [17] N. Ghoussoub and C. Gui, On a conjecture of De Giorgi and some related problems, Math. Ann.311 (1998), 481–491. Zbl0918.35046MR1637919
  18. [18] D. Gilbarg and N. S. Trudinger, “Elliptic partial differential equations of second order”, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Zbl1042.35002MR1814364
  19. [19] E. H. Lieb and M. Loss, “Analysis”, Vol. 14 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 1997. Zbl0966.26002MR1415616
  20. [20] L. Modica, A gradient bound and a Liouville theorem for nonlinear Poisson equations, Comm. Pure Appl. Math.38 (1985), 679–684. Zbl0612.35051MR803255
  21. [21] W. F. Moss and J. Piepenbrink, Positive solutions of elliptic equations, Pacific J. Math.75 (1978), 219–226. Zbl0381.35026MR500041
  22. [22] O. Savin, Regularity of flat level sets in phase transitions, to appear in Ann. of Math. 2008. Zbl1180.35499MR2480601
  23. [23] E. Sernesi, “Geometria 2”, Bollati Boringhieri, Torino, 1994. 
  24. [24] L. Simon, “Singular Sets and Asymptotics in Geometric Analysis”, Lipschitz Lectures. Institut für Angewandte Mathematik, http://math.stanford.edu/ lms/lipschitz/lipschitz.pdf, Bonn, 2007. 
  25. [25] Y. S. Sire and E. Valdinoci, Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result, preprint, 2008. Zbl1163.35019
  26. [26] P. Sternberg and K. Zumbrun, Connectivity of phase boundaries in strictly convex domains, Arch. Ration. Mech. Anal.141 (1998), 375–400. Zbl0911.49025MR1620498
  27. [27] P. Sternberg and K. Zumbrun, A Poincaré inequality with applications to volume-constrained area-minimizing surfaces, J. Reine Angew. Math.503 (1998), 63–85. Zbl0967.53006MR1650327
  28. [28] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations51 (1984), 126–150. Zbl0488.35017MR727034
  29. [29] K. Uhlenbeck, Regularity for a class of non-linear elliptic systems, Acta Math.138 (1977), 219–240. Zbl0372.35030MR474389
  30. [30] E. Valdinoci, B. Sciunzi and V. O. Savin, Flat level set regularity of p -Laplace phase transitions, Mem. Amer. Math. Soc. 182 (2006), vi–144. Zbl1138.35029MR2228294

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.