Dynamical systems with Newtonian type potentials

Marco Degiovanni; Fabio Giannoni; Antonio Marino

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1987)

  • Volume: 81, Issue: 3, page 271-277
  • ISSN: 1120-6330

Abstract

top
We study the existence of regular periodic solutions to some dynamical systems whose potential energy is negative, has only a singular point and goes to zero at iniìnity. We give sufficient conditions to the existence of periodic solutions of assigned period which do not meet the singularity.

How to cite

top

Degiovanni, Marco, Giannoni, Fabio, and Marino, Antonio. "Dynamical systems with Newtonian type potentials." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 81.3 (1987): 271-277. <http://eudml.org/doc/287460>.

@article{Degiovanni1987,
abstract = {We study the existence of regular periodic solutions to some dynamical systems whose potential energy is negative, has only a singular point and goes to zero at iniìnity. We give sufficient conditions to the existence of periodic solutions of assigned period which do not meet the singularity.},
author = {Degiovanni, Marco, Giannoni, Fabio, Marino, Antonio},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Dynamical systems; Newtonian potential; Periodic solutions; existence of regular periodic solutions; dynamical systems; existence of periodic solutions},
language = {eng},
month = {9},
number = {3},
pages = {271-277},
publisher = {Accademia Nazionale dei Lincei},
title = {Dynamical systems with Newtonian type potentials},
url = {http://eudml.org/doc/287460},
volume = {81},
year = {1987},
}

TY - JOUR
AU - Degiovanni, Marco
AU - Giannoni, Fabio
AU - Marino, Antonio
TI - Dynamical systems with Newtonian type potentials
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1987/9//
PB - Accademia Nazionale dei Lincei
VL - 81
IS - 3
SP - 271
EP - 277
AB - We study the existence of regular periodic solutions to some dynamical systems whose potential energy is negative, has only a singular point and goes to zero at iniìnity. We give sufficient conditions to the existence of periodic solutions of assigned period which do not meet the singularity.
LA - eng
KW - Dynamical systems; Newtonian potential; Periodic solutions; existence of regular periodic solutions; dynamical systems; existence of periodic solutions
UR - http://eudml.org/doc/287460
ER -

References

top
  1. AMBROSETTI, A. and COTI ZELATI, V. - Solutions with minimal period for Hamiltonian systems in a potential well, «Ann. Inst. H. Poincaré. Anal. Non Linéaire», in press. Zbl0623.58013
  2. AMBROSETTI, A. and COTI ZELATI, V. - Critical points with lack of compactness and singular dynamical systems, «Ann. Mat. Pura Appl.», in press. Zbl0642.58017
  3. BENCI, V. (1984) - Normal modes of a Lagrangian system constrained in a potential well, «Ann. Inst. H. Poincaré. Anal. Non Linéaire », 1, 379-400. Zbl0561.58006MR779875
  4. CAPOZZI, A., GRECO, C. and SALVATORE, A. (1985) - Lagrangian systems in presence of singularities, preprint, Dip. Mat., Bari. Zbl0664.34054MR915729DOI10.2307/2046044
  5. COTI ZELATI, V. - Dynamical systems with effective-like potentials, «Nonlinear Anal.», in press. Zbl0648.34050MR926213DOI10.1016/0362-546X(88)90035-1
  6. GORDON, W.B. (1975) - Conservative dynamical systems involving strong forces, «Trans. Amer. Math. Soc.», 204, 113-135. Zbl0276.58005MR377983
  7. GORDON, W.B. (1977) - A minimizing property of Keplerian orbits, «Amer. J. Math.», 99, 961-971. Zbl0378.58006MR502484
  8. GRECO, C. (1985) - Periodic solutions of some nonlinear ODE with singular nonlinear part, preprint, Dip. Mat., Bari. Zbl0644.34034MR916285
  9. GRECO, C. (1986) - Periodic solutions of a class of singular Hamiltonian systems, Dip. Mat., Bari. Zbl0648.34048
  10. RABINOWITZ, P.H. (1982) - Periodic solutions of Hamiltonian systems: a survey, «SIAM J. Math. Anal.», 13, 343-352. Zbl0521.58028MR653462DOI10.1137/0513027

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.