Algebraic degrees for iterates of meromorphic self-maps of Pk.
Publicacions Matemàtiques (2006)
- Volume: 50, Issue: 2, page 457-473
- ISSN: 0214-1493
Access Full Article
topAbstract
topHow to cite
topNguyên, Viêt-Anh. "Algebraic degrees for iterates of meromorphic self-maps of Pk.." Publicacions Matemàtiques 50.2 (2006): 457-473. <http://eudml.org/doc/41599>.
@article{Nguyên2006,
abstract = {We first introduce the class of quasi-algebraically stable meromorphic maps of Pk. This class is strictly larger than that of algebraically stable meromorphic self-maps of Pk. Then we prove that all maps in the new class enjoy a recurrent property. In particular, the algebraic degrees for iterates of these maps can be computed and their first dynamical degrees are always algebraic integers.},
author = {Nguyên, Viêt-Anh},
journal = {Publicacions Matemàtiques},
keywords = {Funciones de varias variables complejas; Función meromorfa; Polinomios; Sistemas dinámicos complejos; quasi-algebraically stable meromorphic maps; recurrent property; first dynamical degrees},
language = {eng},
number = {2},
pages = {457-473},
title = {Algebraic degrees for iterates of meromorphic self-maps of Pk.},
url = {http://eudml.org/doc/41599},
volume = {50},
year = {2006},
}
TY - JOUR
AU - Nguyên, Viêt-Anh
TI - Algebraic degrees for iterates of meromorphic self-maps of Pk.
JO - Publicacions Matemàtiques
PY - 2006
VL - 50
IS - 2
SP - 457
EP - 473
AB - We first introduce the class of quasi-algebraically stable meromorphic maps of Pk. This class is strictly larger than that of algebraically stable meromorphic self-maps of Pk. Then we prove that all maps in the new class enjoy a recurrent property. In particular, the algebraic degrees for iterates of these maps can be computed and their first dynamical degrees are always algebraic integers.
LA - eng
KW - Funciones de varias variables complejas; Función meromorfa; Polinomios; Sistemas dinámicos complejos; quasi-algebraically stable meromorphic maps; recurrent property; first dynamical degrees
UR - http://eudml.org/doc/41599
ER -
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.