Flux in axiomatic potential theory. II. Duality

Bertram Walsh

Annales de l'institut Fourier (1969)

  • Volume: 19, Issue: 2, page 371-417
  • ISSN: 0373-0956

Abstract

top
This is a continuation of an earlier paper [Inventiones Math., 8 (1969), 175-221]. It is assumed that a space W and a sheaf H over W are given, such that the pair ( W , H ) satisfies the Brelot axioms and also satisfies, locally, the additional hypotheses of the theory of adjoint sheaves. The following subjects are considered: 1) Extension of the adjoint-sheaf theory to the case where ( W , H ) does not admit a global potential (in particular, the case where W is compact). 2) Construction of a new fine resolution O H R L O of the sheaf H , in which L is a (complete pre-)sheaf of measures on W . 3) Construction of a natural duality between the flux functional corresponds to a distinguished positive element of H W * .

How to cite

top

Walsh, Bertram. "Flux in axiomatic potential theory. II. Duality." Annales de l'institut Fourier 19.2 (1969): 371-417. <http://eudml.org/doc/73995>.

@article{Walsh1969,
abstract = {This is a continuation of an earlier paper [Inventiones Math., 8 (1969), 175-221]. It is assumed that a space $W$ and a sheaf $\{\bf H\}$ over $W$ are given, such that the pair $(W,\{\bf H\})$ satisfies the Brelot axioms and also satisfies, locally, the additional hypotheses of the theory of adjoint sheaves. The following subjects are considered: 1) Extension of the adjoint-sheaf theory to the case where $(W,\{\bf H\})$ does not admit a global potential (in particular, the case where $W$ is compact). 2) Construction of a new fine resolution $O\rightarrow \{\bf H\}\rightarrow \{\bf R\}\rightarrow \{\bf L\}\rightarrow O$ of the sheaf $\{\bf H\}$, in which $\{\bf L\}$ is a (complete pre-)sheaf of measures on $W$. 3) Construction of a natural duality between the flux functional corresponds to a distinguished positive element of $H^*_W$.},
author = {Walsh, Bertram},
journal = {Annales de l'institut Fourier},
keywords = {partial differential equations},
language = {eng},
number = {2},
pages = {371-417},
publisher = {Association des Annales de l'Institut Fourier},
title = {Flux in axiomatic potential theory. II. Duality},
url = {http://eudml.org/doc/73995},
volume = {19},
year = {1969},
}

TY - JOUR
AU - Walsh, Bertram
TI - Flux in axiomatic potential theory. II. Duality
JO - Annales de l'institut Fourier
PY - 1969
PB - Association des Annales de l'Institut Fourier
VL - 19
IS - 2
SP - 371
EP - 417
AB - This is a continuation of an earlier paper [Inventiones Math., 8 (1969), 175-221]. It is assumed that a space $W$ and a sheaf ${\bf H}$ over $W$ are given, such that the pair $(W,{\bf H})$ satisfies the Brelot axioms and also satisfies, locally, the additional hypotheses of the theory of adjoint sheaves. The following subjects are considered: 1) Extension of the adjoint-sheaf theory to the case where $(W,{\bf H})$ does not admit a global potential (in particular, the case where $W$ is compact). 2) Construction of a new fine resolution $O\rightarrow {\bf H}\rightarrow {\bf R}\rightarrow {\bf L}\rightarrow O$ of the sheaf ${\bf H}$, in which ${\bf L}$ is a (complete pre-)sheaf of measures on $W$. 3) Construction of a natural duality between the flux functional corresponds to a distinguished positive element of $H^*_W$.
LA - eng
KW - partial differential equations
UR - http://eudml.org/doc/73995
ER -

References

top
  1. [1] H. BAUER, Harmonische Räume und ihre Potentialtheorie, Springer Lecture Notes in Mathematics 22 (1966). Zbl0142.38402
  2. [2] N. BOBOC, C. CONSTANTINESCU and A. CORNEA, Axiomatic theory of harmonic functions : Nonnegative superharmonic functions, Ann. Inst. Fourier (Grenoble) 15 (1965), 283-312. Zbl0139.06604MR32 #2603
  3. [3] G. E. BREDON, Sheaf Theory, McGraw-Hill, (1967). Zbl0158.20505MR36 #4552
  4. [4] M. BRELOT, Lectures on Potential Theory, Tata Institute, Bombay, 1960. Zbl0098.06903MR22 #9749
  5. [5] C. H. DOWKER, Lectures on Sheaf Theory, Tata Institute, Bombay, 1957. 
  6. [6] N. DUNFORD and J. T. SCHWARTZ, Linear Operators I, Interscience, New York, 1958. Zbl0084.10402MR22 #8302
  7. [7] R. C. GUNNING, Lectures on Riemann Surfaces, Princeton Univ. Press, 1966. Zbl0175.36801MR34 #7789
  8. [8] R. C. GUNNING and H. ROSSI, Analytic Functions of Several Complex Variables, Prentice-Hall, Englewood Cliffs, 1965. Zbl0141.08601MR31 #4927
  9. [9] R.-M. HERVÉ, Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel, Ann. Inst. Fourier (Grenoble) 12 (1962), 415-571. Zbl0101.08103MR25 #3186
  10. [10] P. A. LOEB, An axiomatic treatment of pairs of elliptic differential equations, Ann. Inst. Fourier (Grenoble) 16 (1966), 167-208. Zbl0172.15101MR37 #3039
  11. [11] F.-Y. MAEDA, Axiomatic treatment of full-superharmonic functions, J. Sci. Hiroshima Univ. Ser. A-1 30 (1966), 197-215. Zbl0168.09702
  12. [12] P. A. MEYER, Brelot's axiomatic theory of the Dirichlet problem and Hunt's theory, Ann. Inst. Fourier (Grenoble) 13 (1963), 357-372. Zbl0116.30404MR29 #260
  13. [13] B. RODIN and L. SARIO, Principal Functions, van Nostrand, Princeton, 1968. Zbl0159.10701MR37 #5378
  14. [14] H. SCHAEFER, Topological Vector Spaces, Macmillan, New York, 1966. Zbl0141.30503MR33 #1689
  15. [15] H. SCHAEFER, Invariant ideals of positive operators in C(X), I, Illinois J. Math. 11 (1967), 703-715. Zbl0168.11801MR36 #1996
  16. [16] B. WALSH and P. A. LOEB, Nuclearity in axiomatic potential theory, Bull. Amer. Math. Soc. 72 (1966), 685-689. Zbl0144.15503MR35 #407
  17. [17] N. BOURBAKI, Intégration, Ch. V : Intégration des Mesures, Hermann et Cie, Paris, 1956. 
  18. [18] D. HINRICHSEN, Randintegrale und nukleare Funktionenräume, Ann. Inst. Fourier (Grenoble) 17 (1967), 225-271. Zbl0165.14702MR36 #6914
  19. [19] A. DE LA PRADELLE, Approximation et caractère de quasi-analyticité dans la théorie axiomatique des fonctions harmoniques, Ann. Inst. Fourier (Grenoble) 17 (1967), 383-399. Zbl0153.15501MR37 #3040
  20. [20] H.-G. TILLMANN, Dualität in der Potentialtheorie, Port. Math. 13 (1954), 55-86. Zbl0056.33403MR16,718b
  21. [21] B. WALSH, Flux in axiomatic potential theory. I : Cohomology, Inventiones Math. 8 (1969), 175-221. Zbl0179.15203MR42 #532

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.