The Martin boundaries of equivalent sheaves
Annales de l'institut Fourier (1970)
- Volume: 20, Issue: 1, page 433-456
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topTaylor, John C.. "The Martin boundaries of equivalent sheaves." Annales de l'institut Fourier 20.1 (1970): 433-456. <http://eudml.org/doc/74008>.
@article{Taylor1970,
abstract = {The Martin compactification of $X$ defined by a Brelot sheaf $H_1$ satisfying proportionality is shown to be the same as for $H_2$ if the sheaves agree outside a compact set. Minimal points coincide and hence $S^+_1$ and $S^+_2$ are isomorphic topological cones. Nakai’s result on the extension to $X$ of a function harmonic outside a compact set is extended to Bauer’s theory. The connected components of the Martin boundary $\Delta $ correspond to the ends of $X$ which are related to direct decomposition of the cone $H^+$.},
author = {Taylor, John C.},
journal = {Annales de l'institut Fourier},
keywords = {partial differential equations},
language = {eng},
number = {1},
pages = {433-456},
publisher = {Association des Annales de l'Institut Fourier},
title = {The Martin boundaries of equivalent sheaves},
url = {http://eudml.org/doc/74008},
volume = {20},
year = {1970},
}
TY - JOUR
AU - Taylor, John C.
TI - The Martin boundaries of equivalent sheaves
JO - Annales de l'institut Fourier
PY - 1970
PB - Association des Annales de l'Institut Fourier
VL - 20
IS - 1
SP - 433
EP - 456
AB - The Martin compactification of $X$ defined by a Brelot sheaf $H_1$ satisfying proportionality is shown to be the same as for $H_2$ if the sheaves agree outside a compact set. Minimal points coincide and hence $S^+_1$ and $S^+_2$ are isomorphic topological cones. Nakai’s result on the extension to $X$ of a function harmonic outside a compact set is extended to Bauer’s theory. The connected components of the Martin boundary $\Delta $ correspond to the ends of $X$ which are related to direct decomposition of the cone $H^+$.
LA - eng
KW - partial differential equations
UR - http://eudml.org/doc/74008
ER -
References
top- [1] E.M. ALFSEN, Boundary values for homeomorphisms of compact convex sets, Math. Scand. 19 (1966), 113-121. Zbl0152.11703MR34 #8139
- [2] H. BAUER, Harmonische Räume und ihre Potentialtheorie, Springer Lecture Notes 22, Berlin 1966. Zbl0142.38402
- [3] M. BRELOT, Lectures on potential theory, Tata Inst. of Fund. Res., Bombay 1960. Zbl0098.06903MR22 #9749
- [4] C. CONSTANTINESCU and A. CORNEA, Über den idealen Rand und einige seiner Anwendung bei der Klassifikation der Riemannschen Flächen, Nagoya Mathematical Journal 13 (1958), 169-233. Zbl0093.07701MR20 #3273
- [5] C. CONSTANTINESCU and A. CORNEA, Ideale Ränder Riemannscher Flächen, Springer-Verlag, Berlin 1963. Zbl0112.30801
- [6] C. CONSTANTINESCU and A. CORNEA, On the axiomatic of harmonic functions (I), Ann. Inst. Fourier 13 (1963), 373-388. Zbl0122.34001MR29 #2416
- [7] C. CONSTANTINESCU, A topology on the cone of non-negative superharmonic functions, Rev. Roum. Math. Pures et Appl. 10 (1965), 1331-1348. Zbl0144.36603MR35 #1804
- [8] A. CORNEA, Sur la dénombrabilité à l'infini d'un espace harmonique de Brelot, C.R. Acad. Sci. Paris 264 (1967), 190-191. Zbl0151.16202MR34 #6140
- [9] K. GOWRISANKARAN, Extreme harmonic functions and boundary value problems, Ann. Inst. Fourier 13 (2) (1963), 307-356. Zbl0134.09503MR29 #1350
- [10] R.M. HERVE, Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel, Ann. Inst. Fourier 12 (1962), 415-571. Zbl0101.08103MR25 #3186
- [11] P. LOEB, An axiomatic treatment of pairs of elliptic differential equations, Ann. Inst. Fourier 16 (2) (1966), 167-208. Zbl0172.15101MR37 #3039
- [12] J. KÖHN and M. SIEVEKING, Zum Cauchyschen und Dirichletschen Problem, Math. Ann. 177 (1968), 133-142. Zbl0165.13003MR37 #3029
- [13] R.S. MARTIN, Minimal positive harmonic functions, Trans. Amer. Math. Soc. 49 (1941), 137-172. Zbl0025.33302MR2,292hJFM67.0343.03
- [14] B. RODIN and L. SARIO, Principal functions, Van Nostrand, Princeton 1968. Zbl0159.10701MR37 #5378
- [15] M. SIEVEKING, Integraldarstellung superharmonischer Funktionem mit anwendung auf parabolische Differentialgleichungen, Seminar über Potential theorie, Springer Lecture Notes 69, Berlin 1968.
- [16] J.C. TAYLOR, The Martin boundary and adjoint harmonic functions, publ. in Contributions to extension theory of topological structures, V E B Deutscher Verlag, Berlin 1969. Zbl0185.19802
- [17] Ch. de la VALLEE POUSSIN, Propriétés des fonctions harmoniques dans un domaine ouvert limité par des surfaces à courbure bornée, Ann. Ec. Norm. de Pise 2 (1933), 167-197. Zbl0006.30801JFM59.1136.02
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.