The Martin boundaries of equivalent sheaves

John C. Taylor

Annales de l'institut Fourier (1970)

  • Volume: 20, Issue: 1, page 433-456
  • ISSN: 0373-0956

Abstract

top
The Martin compactification of X defined by a Brelot sheaf H 1 satisfying proportionality is shown to be the same as for H 2 if the sheaves agree outside a compact set. Minimal points coincide and hence S 1 + and S 2 + are isomorphic topological cones. Nakai’s result on the extension to X of a function harmonic outside a compact set is extended to Bauer’s theory. The connected components of the Martin boundary Δ correspond to the ends of X which are related to direct decomposition of the cone H + .

How to cite

top

Taylor, John C.. "The Martin boundaries of equivalent sheaves." Annales de l'institut Fourier 20.1 (1970): 433-456. <http://eudml.org/doc/74008>.

@article{Taylor1970,
abstract = {The Martin compactification of $X$ defined by a Brelot sheaf $H_1$ satisfying proportionality is shown to be the same as for $H_2$ if the sheaves agree outside a compact set. Minimal points coincide and hence $S^+_1$ and $S^+_2$ are isomorphic topological cones. Nakai’s result on the extension to $X$ of a function harmonic outside a compact set is extended to Bauer’s theory. The connected components of the Martin boundary $\Delta $ correspond to the ends of $X$ which are related to direct decomposition of the cone $H^+$.},
author = {Taylor, John C.},
journal = {Annales de l'institut Fourier},
keywords = {partial differential equations},
language = {eng},
number = {1},
pages = {433-456},
publisher = {Association des Annales de l'Institut Fourier},
title = {The Martin boundaries of equivalent sheaves},
url = {http://eudml.org/doc/74008},
volume = {20},
year = {1970},
}

TY - JOUR
AU - Taylor, John C.
TI - The Martin boundaries of equivalent sheaves
JO - Annales de l'institut Fourier
PY - 1970
PB - Association des Annales de l'Institut Fourier
VL - 20
IS - 1
SP - 433
EP - 456
AB - The Martin compactification of $X$ defined by a Brelot sheaf $H_1$ satisfying proportionality is shown to be the same as for $H_2$ if the sheaves agree outside a compact set. Minimal points coincide and hence $S^+_1$ and $S^+_2$ are isomorphic topological cones. Nakai’s result on the extension to $X$ of a function harmonic outside a compact set is extended to Bauer’s theory. The connected components of the Martin boundary $\Delta $ correspond to the ends of $X$ which are related to direct decomposition of the cone $H^+$.
LA - eng
KW - partial differential equations
UR - http://eudml.org/doc/74008
ER -

References

top
  1. [1] E.M. ALFSEN, Boundary values for homeomorphisms of compact convex sets, Math. Scand. 19 (1966), 113-121. Zbl0152.11703MR34 #8139
  2. [2] H. BAUER, Harmonische Räume und ihre Potentialtheorie, Springer Lecture Notes 22, Berlin 1966. Zbl0142.38402
  3. [3] M. BRELOT, Lectures on potential theory, Tata Inst. of Fund. Res., Bombay 1960. Zbl0098.06903MR22 #9749
  4. [4] C. CONSTANTINESCU and A. CORNEA, Über den idealen Rand und einige seiner Anwendung bei der Klassifikation der Riemannschen Flächen, Nagoya Mathematical Journal 13 (1958), 169-233. Zbl0093.07701MR20 #3273
  5. [5] C. CONSTANTINESCU and A. CORNEA, Ideale Ränder Riemannscher Flächen, Springer-Verlag, Berlin 1963. Zbl0112.30801
  6. [6] C. CONSTANTINESCU and A. CORNEA, On the axiomatic of harmonic functions (I), Ann. Inst. Fourier 13 (1963), 373-388. Zbl0122.34001MR29 #2416
  7. [7] C. CONSTANTINESCU, A topology on the cone of non-negative superharmonic functions, Rev. Roum. Math. Pures et Appl. 10 (1965), 1331-1348. Zbl0144.36603MR35 #1804
  8. [8] A. CORNEA, Sur la dénombrabilité à l'infini d'un espace harmonique de Brelot, C.R. Acad. Sci. Paris 264 (1967), 190-191. Zbl0151.16202MR34 #6140
  9. [9] K. GOWRISANKARAN, Extreme harmonic functions and boundary value problems, Ann. Inst. Fourier 13 (2) (1963), 307-356. Zbl0134.09503MR29 #1350
  10. [10] R.M. HERVE, Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel, Ann. Inst. Fourier 12 (1962), 415-571. Zbl0101.08103MR25 #3186
  11. [11] P. LOEB, An axiomatic treatment of pairs of elliptic differential equations, Ann. Inst. Fourier 16 (2) (1966), 167-208. Zbl0172.15101MR37 #3039
  12. [12] J. KÖHN and M. SIEVEKING, Zum Cauchyschen und Dirichletschen Problem, Math. Ann. 177 (1968), 133-142. Zbl0165.13003MR37 #3029
  13. [13] R.S. MARTIN, Minimal positive harmonic functions, Trans. Amer. Math. Soc. 49 (1941), 137-172. Zbl0025.33302MR2,292hJFM67.0343.03
  14. [14] B. RODIN and L. SARIO, Principal functions, Van Nostrand, Princeton 1968. Zbl0159.10701MR37 #5378
  15. [15] M. SIEVEKING, Integraldarstellung superharmonischer Funktionem mit anwendung auf parabolische Differentialgleichungen, Seminar über Potential theorie, Springer Lecture Notes 69, Berlin 1968. 
  16. [16] J.C. TAYLOR, The Martin boundary and adjoint harmonic functions, publ. in Contributions to extension theory of topological structures, V E B Deutscher Verlag, Berlin 1969. Zbl0185.19802
  17. [17] Ch. de la VALLEE POUSSIN, Propriétés des fonctions harmoniques dans un domaine ouvert limité par des surfaces à courbure bornée, Ann. Ec. Norm. de Pise 2 (1933), 167-197. Zbl0006.30801JFM59.1136.02

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.