Etale coverings of a Mumford curve
Annales de l'institut Fourier (1983)
- Volume: 33, Issue: 1, page 29-52
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topPut, Marius Van Der. "Etale coverings of a Mumford curve." Annales de l'institut Fourier 33.1 (1983): 29-52. <http://eudml.org/doc/74574>.
@article{Put1983,
abstract = {Let the field $K$ be complete w.r.t. a non-archimedean valuation. Let $X/K$ be a Mumford curve, i.e. the irreducible components of the stable reduction of $X$ have genus 0. The abelian etale coverings of $X$ are constructed using the analytic uniformization $\Omega \rightarrow X$ and the theta-functions on $X$. For a local field $K$ one rediscovers $G$. Frey’s description of the maximal abelian unramified extension of the field of rational functions of $X$.},
author = {Put, Marius Van Der},
journal = {Annales de l'institut Fourier},
keywords = {complete non-archimedean valued field; Mumford curve; abelian etale coverings; theta-functions; field of rational functions},
language = {eng},
number = {1},
pages = {29-52},
publisher = {Association des Annales de l'Institut Fourier},
title = {Etale coverings of a Mumford curve},
url = {http://eudml.org/doc/74574},
volume = {33},
year = {1983},
}
TY - JOUR
AU - Put, Marius Van Der
TI - Etale coverings of a Mumford curve
JO - Annales de l'institut Fourier
PY - 1983
PB - Association des Annales de l'Institut Fourier
VL - 33
IS - 1
SP - 29
EP - 52
AB - Let the field $K$ be complete w.r.t. a non-archimedean valuation. Let $X/K$ be a Mumford curve, i.e. the irreducible components of the stable reduction of $X$ have genus 0. The abelian etale coverings of $X$ are constructed using the analytic uniformization $\Omega \rightarrow X$ and the theta-functions on $X$. For a local field $K$ one rediscovers $G$. Frey’s description of the maximal abelian unramified extension of the field of rational functions of $X$.
LA - eng
KW - complete non-archimedean valued field; Mumford curve; abelian etale coverings; theta-functions; field of rational functions
UR - http://eudml.org/doc/74574
ER -
References
top- [1] J. FRESNEL, M. van der PUT, Géométrie analytique rigide et applications, Progress in Math., Birkhäuser Verlag, 1981. Zbl0479.14015MR83g:32001
- [2] G. FREY, Maximal abelsche Erweiterung von Funktionenkörper über lokalen Köpern, Archiv der Mathematik, Vol. 28 (1977), 157-168. Zbl0352.14012MR56 #12009
- [3] L. GERRITZEN, M. van der PUT, Schottky groups and Mumford curves, Lect. Notes in Math., 817 (1980). Zbl0442.14009MR82j:10053
- [4] M. van der PUT, Stable reductions of algebraic curves, University of Groningen preprint, ZW-8019 (1982).
- [5] M. van der PUT, Les fonctions theta d'une courbe de Mumford, Sém. d'Analyse Ultramétrique, déc. 1981, I.H.P.
- [6] G. van STEEN, Hyperelliptic Curves defined by Schottky groups over a non-archimedean valued field, Thesis Antwerpen U.I.A., 1981.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.