Etale coverings of a Mumford curve

Marius Van Der Put

Annales de l'institut Fourier (1983)

  • Volume: 33, Issue: 1, page 29-52
  • ISSN: 0373-0956

Abstract

top
Let the field K be complete w.r.t. a non-archimedean valuation. Let X / K be a Mumford curve, i.e. the irreducible components of the stable reduction of X have genus 0. The abelian etale coverings of X are constructed using the analytic uniformization Ω X and the theta-functions on X . For a local field K one rediscovers G . Frey’s description of the maximal abelian unramified extension of the field of rational functions of X .

How to cite

top

Put, Marius Van Der. "Etale coverings of a Mumford curve." Annales de l'institut Fourier 33.1 (1983): 29-52. <http://eudml.org/doc/74574>.

@article{Put1983,
abstract = {Let the field $K$ be complete w.r.t. a non-archimedean valuation. Let $X/K$ be a Mumford curve, i.e. the irreducible components of the stable reduction of $X$ have genus 0. The abelian etale coverings of $X$ are constructed using the analytic uniformization $\Omega \rightarrow X$ and the theta-functions on $X$. For a local field $K$ one rediscovers $G$. Frey’s description of the maximal abelian unramified extension of the field of rational functions of $X$.},
author = {Put, Marius Van Der},
journal = {Annales de l'institut Fourier},
keywords = {complete non-archimedean valued field; Mumford curve; abelian etale coverings; theta-functions; field of rational functions},
language = {eng},
number = {1},
pages = {29-52},
publisher = {Association des Annales de l'Institut Fourier},
title = {Etale coverings of a Mumford curve},
url = {http://eudml.org/doc/74574},
volume = {33},
year = {1983},
}

TY - JOUR
AU - Put, Marius Van Der
TI - Etale coverings of a Mumford curve
JO - Annales de l'institut Fourier
PY - 1983
PB - Association des Annales de l'Institut Fourier
VL - 33
IS - 1
SP - 29
EP - 52
AB - Let the field $K$ be complete w.r.t. a non-archimedean valuation. Let $X/K$ be a Mumford curve, i.e. the irreducible components of the stable reduction of $X$ have genus 0. The abelian etale coverings of $X$ are constructed using the analytic uniformization $\Omega \rightarrow X$ and the theta-functions on $X$. For a local field $K$ one rediscovers $G$. Frey’s description of the maximal abelian unramified extension of the field of rational functions of $X$.
LA - eng
KW - complete non-archimedean valued field; Mumford curve; abelian etale coverings; theta-functions; field of rational functions
UR - http://eudml.org/doc/74574
ER -

References

top
  1. [1] J. FRESNEL, M. van der PUT, Géométrie analytique rigide et applications, Progress in Math., Birkhäuser Verlag, 1981. Zbl0479.14015MR83g:32001
  2. [2] G. FREY, Maximal abelsche Erweiterung von Funktionenkörper über lokalen Köpern, Archiv der Mathematik, Vol. 28 (1977), 157-168. Zbl0352.14012MR56 #12009
  3. [3] L. GERRITZEN, M. van der PUT, Schottky groups and Mumford curves, Lect. Notes in Math., 817 (1980). Zbl0442.14009MR82j:10053
  4. [4] M. van der PUT, Stable reductions of algebraic curves, University of Groningen preprint, ZW-8019 (1982). 
  5. [5] M. van der PUT, Les fonctions theta d'une courbe de Mumford, Sém. d'Analyse Ultramétrique, déc. 1981, I.H.P. 
  6. [6] G. van STEEN, Hyperelliptic Curves defined by Schottky groups over a non-archimedean valued field, Thesis Antwerpen U.I.A., 1981. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.