Stabilité des C * -algèbres de feuilletages

Michel Hilsum; Georges Skandalis

Annales de l'institut Fourier (1983)

  • Volume: 33, Issue: 3, page 201-208
  • ISSN: 0373-0956

Abstract

top
Let A be either the reduced or the maximal C * -algebra associated to a foliated manifold V , F , and let K be the elementary C * -algebra of compact operators. Then, it dim F 0 , it is shown that A is isomorphic to the tensor product A K .

How to cite

top

Hilsum, Michel, and Skandalis, Georges. "Stabilité des $C^*$-algèbres de feuilletages." Annales de l'institut Fourier 33.3 (1983): 201-208. <http://eudml.org/doc/74596>.

@article{Hilsum1983,
abstract = {Soit $A$ la $C^*$-algèbre, ou bien réduite ou bien maximale, associée à la variété feuilletée $(V,F)$, et $K$ la $C^*$-algèbre élémentaire des opérateurs compacts. Alors, si dim$\, F\ne 0$, on montre que $A$ est isomorphe à $A\otimes K$.},
author = {Hilsum, Michel, Skandalis, Georges},
journal = {Annales de l'institut Fourier},
keywords = {foliation; reduced or maximal C*-algebra},
language = {fre},
number = {3},
pages = {201-208},
publisher = {Association des Annales de l'Institut Fourier},
title = {Stabilité des $C^*$-algèbres de feuilletages},
url = {http://eudml.org/doc/74596},
volume = {33},
year = {1983},
}

TY - JOUR
AU - Hilsum, Michel
AU - Skandalis, Georges
TI - Stabilité des $C^*$-algèbres de feuilletages
JO - Annales de l'institut Fourier
PY - 1983
PB - Association des Annales de l'Institut Fourier
VL - 33
IS - 3
SP - 201
EP - 208
AB - Soit $A$ la $C^*$-algèbre, ou bien réduite ou bien maximale, associée à la variété feuilletée $(V,F)$, et $K$ la $C^*$-algèbre élémentaire des opérateurs compacts. Alors, si dim$\, F\ne 0$, on montre que $A$ est isomorphe à $A\otimes K$.
LA - fre
KW - foliation; reduced or maximal C*-algebra
UR - http://eudml.org/doc/74596
ER -

References

top
  1. [1] A. CONNES, Sur la théorie non commutative de l'intégration, Lect. Notes in Math., n° 725, Springer (1979), 19 à 143. Zbl0412.46053MR81g:46090
  2. [2] A. CONNES, Survey of foliations and operator algebras, Operator algebras and applications, Proc. of Symp. in Pure Math., vol 38, part 1, A.M.S., Providence 1982. Zbl0531.57023
  3. [3] A. CONNES, G. SKANDALIS, The longitudinal index theorem for foliations, Preprint I.H.E.S./M/82/24. Zbl0575.58030
  4. [4] G.G. KASPAROV, Hilbert C*-modules, Theorems of Stinespring and Voiculescu, Journal of Operator Theory, vol. 4 n° 1 (1980). Zbl0456.46059MR82b:46074
  5. [5] J.F. PLANTE, Foliations with measure preserving holonomy, Ann. of Math., 102 (1975). Zbl0314.57018MR52 #11947
  6. [6] J.N. RENAULT, A groupoid approach to C*-algebras, Lect. Notes in Math., n° 793, Springer (1980). Zbl0433.46049MR82h:46075
  7. [7] M. RIEFFEL, Morita equivalence for C* and W* algebras, Journal of Pure and Applied Algebra, 5 (1974). Zbl0295.46099MR51 #3912

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.