Opérades cellulaires et espaces de lacets itérés

Clemens Berger

Annales de l'institut Fourier (1996)

  • Volume: 46, Issue: 4, page 1125-1157
  • ISSN: 0373-0956

Abstract

top
The configuration space of p -tuples of pairwise distinct points in R carries a natural filtration coming from the inclusions of the R n into R . We characterize the homotopy type of this filtration by the combinatorial properties of an underlying cellular structure and establish a close relationship to May’s theory of E n -operads. This gives a unified approach to the different known combinatorial models of iterated loop spaces reproving by the way the approximation theorems of Milgram, Smith and Kashiwabara.

How to cite

top

Berger, Clemens. "Opérades cellulaires et espaces de lacets itérés." Annales de l'institut Fourier 46.4 (1996): 1125-1157. <http://eudml.org/doc/75202>.

@article{Berger1996,
abstract = {L’espace des configurations de $p$ points distincts de $\{\bf R\}^\infty $ admet une filtration naturelle qui est induite par les inclusions des $\{\bf R\}^n$ dans $\{\bf R\}^\infty $. Nous caractérisons le type d’homotopie de cette filtration par les propriétés combinatoires d’une structure cellulaire sous-jacente, étroitement liée à la théorie des $E_n$-opérades de May. Cela donne une approche unifiée des différents modèles combinatoires d’espaces de lacets itérés et redémontre les théorèmes d’approximation de Milgram, Smith et Kashiwabara.},
author = {Berger, Clemens},
journal = {Annales de l'institut Fourier},
keywords = {configuration spaces; iterated loop spaces; cellular operads; symmetric groups; permutohedra},
language = {fre},
number = {4},
pages = {1125-1157},
publisher = {Association des Annales de l'Institut Fourier},
title = {Opérades cellulaires et espaces de lacets itérés},
url = {http://eudml.org/doc/75202},
volume = {46},
year = {1996},
}

TY - JOUR
AU - Berger, Clemens
TI - Opérades cellulaires et espaces de lacets itérés
JO - Annales de l'institut Fourier
PY - 1996
PB - Association des Annales de l'Institut Fourier
VL - 46
IS - 4
SP - 1125
EP - 1157
AB - L’espace des configurations de $p$ points distincts de ${\bf R}^\infty $ admet une filtration naturelle qui est induite par les inclusions des ${\bf R}^n$ dans ${\bf R}^\infty $. Nous caractérisons le type d’homotopie de cette filtration par les propriétés combinatoires d’une structure cellulaire sous-jacente, étroitement liée à la théorie des $E_n$-opérades de May. Cela donne une approche unifiée des différents modèles combinatoires d’espaces de lacets itérés et redémontre les théorèmes d’approximation de Milgram, Smith et Kashiwabara.
LA - fre
KW - configuration spaces; iterated loop spaces; cellular operads; symmetric groups; permutohedra
UR - http://eudml.org/doc/75202
ER -

References

top
  1. [1] C. BALTEANU, Z. FIEDOROWICZ, R. SCHWÄNZL et R. VOGT, Iterated monoidal categories, preprint (1995). 
  2. [2] H.-J. BAUES, Geometry of loop spaces and the cobar-construction, Mem. of the Amer. Math. Soc., 230 (1980). Zbl0473.55009MR81m:55010
  3. [3] M. G. BARRATT et P. J. ECCLES, Γ+-Structures I, II, III, Topology, 13 (1974), 25-45, 113-126, 199-207. Zbl0304.55010
  4. [4] C. BERGER, Un groupoïde simplicial comme modèle de l'espace des chemins, Bull. Soc. Math. France, 123 (1995), 1-32. Zbl0820.18005MR96a:18010
  5. [5] R. BLIND et P. MANI, On puzzles and polytope isomorphism, Aequationes Math., 34 (1987), 287-297. Zbl0634.52005MR89b:52008
  6. [6] J. M. BOARDMAN et R. M. VOGT, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Math. 347, Springer Verlag (1973). Zbl0285.55012MR54 #8623a
  7. [7] F.R. COHEN, The homology of Cn+1-spaces, Lecture Notes in Math. 533, Springer Verlag (1976), 207-351. Zbl0334.55009MR55 #9096
  8. [8] F.R. COHEN, J. P. MAY et L. R. TAYLOR, Splitting of certain spaces CX, Math. Proc. Camb. Phil. Soc., 84 (1978), 465-496. Zbl0408.55006MR80a:55010
  9. [9] G. DUNN, Tensor product of operads and iterated loop spaces, Journal of Pure and Applied Algebra, 50 (1988), 237-258. Zbl0672.55004MR89g:55012
  10. [10] R. FOX et L. NEUWIRTH, The braid groups, Math. Scand., 10 (1962), 119-126. Zbl0117.41101MR27 #742
  11. [11] M.M. KAPRANOV, The permutoassociahedron, MacLane's coherence theorem and asymptotic zones for KZ equation, Journal of Pure and Applied Algebra, 85 (1993), 119-142. Zbl0812.18003
  12. [12] T. KASHIWABARA, On the Homotopy Type of Configuration Complexes, Contemporary Math., 146 (1993), 159-170. Zbl0802.55004MR94j:55008
  13. [13] J.P. MAY, The Geometry of iterated loop spaces, Lecture Notes in Math., 277, Springer Verlag (1972). Zbl0244.55009MR54 #8623b
  14. [14] J.P. MAY, E∞-spaces, group completions and permutative categories, London Math. Soc. Lecture Notes, 11 (1974), 61-94. Zbl0281.55003
  15. [15] R. J. MILGRAM, Iterated loop spaces, Annals of Math., 84 (1966), 386-403. Zbl0145.19901MR34 #6767
  16. [16] D. QUILLEN, Higher algebraic K-theory I, Lecture Notes in Math., 341, Springer Verlag (1973), 85-147. Zbl0292.18004MR49 #2895
  17. [17] G. SEGAL, Configuration spaces and iterated loop spaces, Inventiones Math., 21 (1973), 213-221. Zbl0267.55020MR48 #9710
  18. [18] J.H. SMITH, Simplicial Group Models for ΩnSnX, Israel Journal of Math., 66 (1989), 330-350. Zbl0723.55004MR91e:55014

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.