Classification of irreducible weight modules

Olivier Mathieu

Annales de l'institut Fourier (2000)

  • Volume: 50, Issue: 2, page 537-592
  • ISSN: 0373-0956

Abstract

top
Let 𝔤 be a reductive Lie algebra and let 𝔥 be a Cartan subalgebra. A 𝔤 -module M is called a weighted module if and only if M = λ M λ , where each weight space M λ is finite dimensional. The main result of the paper is the classification of all simple weight 𝔤 -modules. Further, we show that their characters can be deduced from characters of simple modules in category 𝒪 .

How to cite

top

Mathieu, Olivier. "Classification of irreducible weight modules." Annales de l'institut Fourier 50.2 (2000): 537-592. <http://eudml.org/doc/75429>.

@article{Mathieu2000,
abstract = {Let $\{\frak g\}$ be a reductive Lie algebra and let $\{\frak h\}$ be a Cartan subalgebra. A $\{\frak g\}$-module $M$ is called a weighted module if and only if $M =\oplus _\lambda M_\lambda $, where each weight space $M_\lambda $ is finite dimensional. The main result of the paper is the classification of all simple weight $\{\frak g\}$-modules. Further, we show that their characters can be deduced from characters of simple modules in category $\{\cal O\}$.},
author = {Mathieu, Olivier},
journal = {Annales de l'institut Fourier},
keywords = {semisimple Lie algebras; weight modules; reductive algebra; simple weight modules; cuspidal modules; Lie algebras of type and ; coherent families},
language = {eng},
number = {2},
pages = {537-592},
publisher = {Association des Annales de l'Institut Fourier},
title = {Classification of irreducible weight modules},
url = {http://eudml.org/doc/75429},
volume = {50},
year = {2000},
}

TY - JOUR
AU - Mathieu, Olivier
TI - Classification of irreducible weight modules
JO - Annales de l'institut Fourier
PY - 2000
PB - Association des Annales de l'Institut Fourier
VL - 50
IS - 2
SP - 537
EP - 592
AB - Let ${\frak g}$ be a reductive Lie algebra and let ${\frak h}$ be a Cartan subalgebra. A ${\frak g}$-module $M$ is called a weighted module if and only if $M =\oplus _\lambda M_\lambda $, where each weight space $M_\lambda $ is finite dimensional. The main result of the paper is the classification of all simple weight ${\frak g}$-modules. Further, we show that their characters can be deduced from characters of simple modules in category ${\cal O}$.
LA - eng
KW - semisimple Lie algebras; weight modules; reductive algebra; simple weight modules; cuspidal modules; Lie algebras of type and ; coherent families
UR - http://eudml.org/doc/75429
ER -

References

top
  1. [B1] N. BOURBAKI, Groupes et algèbres de Lie, Ch 4-6, Herman, Paris, 1968. 
  2. [B2] N. BOURBAKI, Groupes et algèbres de Lie, Ch 7-8, Herman, Paris, 1975. 
  3. [BLL] G. BENKART, D. BRITTEN and F.W. LEMIRE, Modules with bounded multiplicities for simple Lie algebras, Math. Z., 225 (1997), 333-353. Zbl0884.17004MR98h:17004
  4. [BHL] D. J. BRITTEN, J. HOOPER and F.W. LEMIRE, Simple Cn-modules with multiplicities 1 and applications, Canad. J. Phys., 72 (1994), 326-335. Zbl0991.17501MR96d:17004
  5. [BFL] D. J. BRITTEN, V.M. FUTORNY and F.W. LEMIRE, Simple A2-modules with a finite-dimensional weight space, Comm. Algebra, 23 (1995), 467-510. Zbl0819.17007MR95k:17005
  6. [BL1] D. J. BRITTEN and F.W. LEMIRE, A classification of simple Lie modules having a 1-dimensional weight space, Trans. Amer. Math. Soc., 299 (1987), 683-697. Zbl0635.17002MR88b:17013
  7. [BL2] D. J. BRITTEN and F.W. LEMIRE, On Modules of Bounded Multiplicities For The Symplectic Algebras, Trans. amer. math. Soc., 351 (1999), 3413-3431. Zbl0930.17005MR99m:17008
  8. [BL3] D. J. BRITTEN and F.W. LEMIRE, The torsion free Pieri formula, Canad. J. Math., 50 (1998), 266-289. Zbl0908.17005MR99f:17005
  9. [CFO] A. CYLKE, V. FUTORNY and S. OVSIENKO, On the support of irreducible non-dense modules for finite-dimensional Lie algebras, Preprint. 
  10. [DMP] I. DIMITROV, O. MATHIEU and I. PENKOV, On the structure of weight modules, to appear in Trans. Amer. Math. Soc. Zbl0984.17006
  11. [D] J. DIXMIER, Algèbres enveloppantes, Gauthier-Villars, Paris, 1974. Zbl0308.17007MR58 #16803a
  12. [Fe] S. FERNANDO, Lie algebra modules with finite dimensional weight spaces, I, TAMS, 322 (1990), 757-781. Zbl0712.17005MR91c:17006
  13. [Fu] V. FUTORNY, The weight representations of semisimple finite dimensional Lie algebras, Ph. D. Thesis, Kiev University, 1987. 
  14. [GJ] O. GABBER, A. JOSEPH, Towards the Kazhdan-Lusztig conjecture, Ann. Sci. E.N.S., 14 (1981), 261-302. Zbl0476.17005MR83e:17009
  15. [Gab] GABRIEL, Exposé au Séminaire Godement, Paris (1959-1960), unpublished. 
  16. [Gai] P.Y. GAILLARD, Formes différentielles sur l'espace projectif réel sous l'action du groupe linéaire général, Comment. Math. Helv., 70 (1995), 375-382. Zbl0852.58001MR96d:58004
  17. [Ja] J. C. JANTZEN, Moduln mit einem hochsten Gewicht, Lect. Notes Math. 750 (1979). Zbl0426.17001MR81m:17011
  18. [Jo1] A. JOSEPH, Topics in Lie algebras, unpublished notes (1995). 
  19. [Jo2] A. JOSEPH, The primitive spectrum of an enveloping algebra, Astérisque, 173-174 (1989), 13-53. Zbl0714.17011MR91b:17012
  20. [Jo3] A. JOSEPH, Some ring theoretic techniques and open problems in enveloping algebras, in Non-commutative Rings, ed. S. Montgomery and L. Small, Birkhäuser (1992), 27-67. Zbl0752.17008MR94j:16045
  21. [K] B. KOSTANT, Lie algebra cohomology and the generalized Borel-Weil-Bott theorem, Ann. of Math., 74 (1961), 329-387. Zbl0134.03501MR26 #265
  22. [Mi] W. MILLER, On Lie algebras and some special functions of mathematical physics, Mem. A.M.S., 50 (1964). Zbl0132.29602MR30 #3246
  23. [S] W. SOERGEL, Kategorie O, perverse Garben und Moduln uber den Koinvarianten zur Weylgruppe, J. A.M.S., 3 (1990), 421-445. Zbl0747.17008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.