Classification of irreducible weight modules
Annales de l'institut Fourier (2000)
- Volume: 50, Issue: 2, page 537-592
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMathieu, Olivier. "Classification of irreducible weight modules." Annales de l'institut Fourier 50.2 (2000): 537-592. <http://eudml.org/doc/75429>.
@article{Mathieu2000,
abstract = {Let $\{\frak g\}$ be a reductive Lie algebra and let $\{\frak h\}$ be a Cartan subalgebra. A $\{\frak g\}$-module $M$ is called a weighted module if and only if $M =\oplus _\lambda M_\lambda $, where each weight space $M_\lambda $ is finite dimensional. The main result of the paper is the classification of all simple weight $\{\frak g\}$-modules. Further, we show that their characters can be deduced from characters of simple modules in category $\{\cal O\}$.},
author = {Mathieu, Olivier},
journal = {Annales de l'institut Fourier},
keywords = {semisimple Lie algebras; weight modules; reductive algebra; simple weight modules; cuspidal modules; Lie algebras of type and ; coherent families},
language = {eng},
number = {2},
pages = {537-592},
publisher = {Association des Annales de l'Institut Fourier},
title = {Classification of irreducible weight modules},
url = {http://eudml.org/doc/75429},
volume = {50},
year = {2000},
}
TY - JOUR
AU - Mathieu, Olivier
TI - Classification of irreducible weight modules
JO - Annales de l'institut Fourier
PY - 2000
PB - Association des Annales de l'Institut Fourier
VL - 50
IS - 2
SP - 537
EP - 592
AB - Let ${\frak g}$ be a reductive Lie algebra and let ${\frak h}$ be a Cartan subalgebra. A ${\frak g}$-module $M$ is called a weighted module if and only if $M =\oplus _\lambda M_\lambda $, where each weight space $M_\lambda $ is finite dimensional. The main result of the paper is the classification of all simple weight ${\frak g}$-modules. Further, we show that their characters can be deduced from characters of simple modules in category ${\cal O}$.
LA - eng
KW - semisimple Lie algebras; weight modules; reductive algebra; simple weight modules; cuspidal modules; Lie algebras of type and ; coherent families
UR - http://eudml.org/doc/75429
ER -
References
top- [B1] N. BOURBAKI, Groupes et algèbres de Lie, Ch 4-6, Herman, Paris, 1968.
- [B2] N. BOURBAKI, Groupes et algèbres de Lie, Ch 7-8, Herman, Paris, 1975.
- [BLL] G. BENKART, D. BRITTEN and F.W. LEMIRE, Modules with bounded multiplicities for simple Lie algebras, Math. Z., 225 (1997), 333-353. Zbl0884.17004MR98h:17004
- [BHL] D. J. BRITTEN, J. HOOPER and F.W. LEMIRE, Simple Cn-modules with multiplicities 1 and applications, Canad. J. Phys., 72 (1994), 326-335. Zbl0991.17501MR96d:17004
- [BFL] D. J. BRITTEN, V.M. FUTORNY and F.W. LEMIRE, Simple A2-modules with a finite-dimensional weight space, Comm. Algebra, 23 (1995), 467-510. Zbl0819.17007MR95k:17005
- [BL1] D. J. BRITTEN and F.W. LEMIRE, A classification of simple Lie modules having a 1-dimensional weight space, Trans. Amer. Math. Soc., 299 (1987), 683-697. Zbl0635.17002MR88b:17013
- [BL2] D. J. BRITTEN and F.W. LEMIRE, On Modules of Bounded Multiplicities For The Symplectic Algebras, Trans. amer. math. Soc., 351 (1999), 3413-3431. Zbl0930.17005MR99m:17008
- [BL3] D. J. BRITTEN and F.W. LEMIRE, The torsion free Pieri formula, Canad. J. Math., 50 (1998), 266-289. Zbl0908.17005MR99f:17005
- [CFO] A. CYLKE, V. FUTORNY and S. OVSIENKO, On the support of irreducible non-dense modules for finite-dimensional Lie algebras, Preprint.
- [DMP] I. DIMITROV, O. MATHIEU and I. PENKOV, On the structure of weight modules, to appear in Trans. Amer. Math. Soc. Zbl0984.17006
- [D] J. DIXMIER, Algèbres enveloppantes, Gauthier-Villars, Paris, 1974. Zbl0308.17007MR58 #16803a
- [Fe] S. FERNANDO, Lie algebra modules with finite dimensional weight spaces, I, TAMS, 322 (1990), 757-781. Zbl0712.17005MR91c:17006
- [Fu] V. FUTORNY, The weight representations of semisimple finite dimensional Lie algebras, Ph. D. Thesis, Kiev University, 1987.
- [GJ] O. GABBER, A. JOSEPH, Towards the Kazhdan-Lusztig conjecture, Ann. Sci. E.N.S., 14 (1981), 261-302. Zbl0476.17005MR83e:17009
- [Gab] GABRIEL, Exposé au Séminaire Godement, Paris (1959-1960), unpublished.
- [Gai] P.Y. GAILLARD, Formes différentielles sur l'espace projectif réel sous l'action du groupe linéaire général, Comment. Math. Helv., 70 (1995), 375-382. Zbl0852.58001MR96d:58004
- [Ja] J. C. JANTZEN, Moduln mit einem hochsten Gewicht, Lect. Notes Math. 750 (1979). Zbl0426.17001MR81m:17011
- [Jo1] A. JOSEPH, Topics in Lie algebras, unpublished notes (1995).
- [Jo2] A. JOSEPH, The primitive spectrum of an enveloping algebra, Astérisque, 173-174 (1989), 13-53. Zbl0714.17011MR91b:17012
- [Jo3] A. JOSEPH, Some ring theoretic techniques and open problems in enveloping algebras, in Non-commutative Rings, ed. S. Montgomery and L. Small, Birkhäuser (1992), 27-67. Zbl0752.17008MR94j:16045
- [K] B. KOSTANT, Lie algebra cohomology and the generalized Borel-Weil-Bott theorem, Ann. of Math., 74 (1961), 329-387. Zbl0134.03501MR26 #265
- [Mi] W. MILLER, On Lie algebras and some special functions of mathematical physics, Mem. A.M.S., 50 (1964). Zbl0132.29602MR30 #3246
- [S] W. SOERGEL, Kategorie O, perverse Garben und Moduln uber den Koinvarianten zur Weylgruppe, J. A.M.S., 3 (1990), 421-445. Zbl0747.17008
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.