Presymplectic lagrangian systems. I : the constraint algorithm and the equivalence theorem
Mark J. Gotay; James M. Nester
Annales de l'I.H.P. Physique théorique (1979)
- Volume: 30, Issue: 2, page 129-142
- ISSN: 0246-0211
Access Full Article
topHow to cite
topGotay, Mark J., and Nester, James M.. "Presymplectic lagrangian systems. I : the constraint algorithm and the equivalence theorem." Annales de l'I.H.P. Physique théorique 30.2 (1979): 129-142. <http://eudml.org/doc/76022>.
@article{Gotay1979,
author = {Gotay, Mark J., Nester, James M.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Legendre transformation; presymplectic manifolds; global presymplectic geometry; degenerate Lagrangian systems; Hamiltonian formulations of dynamical systems; geometric constraint algorithm},
language = {eng},
number = {2},
pages = {129-142},
publisher = {Gauthier-Villars},
title = {Presymplectic lagrangian systems. I : the constraint algorithm and the equivalence theorem},
url = {http://eudml.org/doc/76022},
volume = {30},
year = {1979},
}
TY - JOUR
AU - Gotay, Mark J.
AU - Nester, James M.
TI - Presymplectic lagrangian systems. I : the constraint algorithm and the equivalence theorem
JO - Annales de l'I.H.P. Physique théorique
PY - 1979
PB - Gauthier-Villars
VL - 30
IS - 2
SP - 129
EP - 142
LA - eng
KW - Legendre transformation; presymplectic manifolds; global presymplectic geometry; degenerate Lagrangian systems; Hamiltonian formulations of dynamical systems; geometric constraint algorithm
UR - http://eudml.org/doc/76022
ER -
References
top- [1] R. Abraham and J. Marsden, Foundations of Mechanics, Benjamin, New York, second edition, 1978. Zbl0393.70001MR515141
- [2] J. Klein, Ann. Inst. Fourier (Grenoble), t. 12, 1962, p. 1 ; Symposia MathematicaXIV (Rome Conference on Symplectic Manifolds), 181, 1973. MR215269
- [3] D.J. Simms and N.M.J. Woodhouse, Lectures on Geometric Quantization, Lecture Notes in Physics, t. 53, Springer-Verlag, Berlin, 1976. Zbl0343.53023MR672639
- [4] A nice summary is given in P.A.M. Dirac, Lectures on Quantum Mechanics, Belfer Graduate School of Science Monograph Series, t. 2, 1964. Several examples are presented in Hanson, Regge and Teitelboim, Accademia Nazionale dei Lincei (Rome), t. 22, 1976.
- [5] M.J. Gotay, J.M. Nester and G. Hinds, Presymplectic Manifolds and the Dirac–Bergmann Theory of Constraints, J. Math. Phys., t. 19, 1978, p. 2388. Zbl0418.58010MR506712
- [6] H.P. Künzle, Ann. Inst. H. Poincaré, t. A 11, 1969, p. 393. Zbl0193.24901MR278586
- [7] From the point of view of the constraint algorithm, the homogeneous case is trivial because E ≡ 0 (see section III).
- [8] J.M. Nester and M.J. Gotay, Presymplectic Lagrangian Systems II: The Second–Order Equation Problem (in preparation). Zbl0453.58016
- [9] J. Sniatycki, Proc. 13th Biennial Seminar of the Canadian Math. Cong., t. 2, 1972, p. 125. Zbl0273.58003MR371202
- [10] Throughout this paper, we assume for simplicity that all physical systems under consideration are time-independent and that all relevant phasespaces are finite–dimensional; however, all of the theory developed in this paper can be applied when these restrictions are removed with little or no modification. For details concerning the infinite-dimensional case, see refs. [5] and [18].
- [11] C. Godbillon, Géométrie Différentielle et Mécunique Analytique, Hermann, Paris, 1969. Zbl0174.24602MR242081
- [12] We herein establish some notation and terminology. All manifolds and maps appearing in this paper are assumed to be C∞. We designate the natural pairing TM x T*M → R by <|>. The symbol i denotes the interior product. Note that if γ is a p-form, and X1, ..., Xp are vectorfields, then i(X1) ... i(Xp)γ = γ(Xp, ... , X1). The symbol « | N » means « restriction to the submanifold N ». If j : N → M is the inclusion, then we denote by γ | N the restriction of γ to N. Given a 2-form Ω on M, we define the « Ω-orthogonal complement » of TN in TM to be TN1 = {Z∈TM such that Ω(Z, Y) = 0 for all Y∈TN}. Furthermore, we define ker Ω = {Y∈TM such that i(Y)Ω = 0 }. If f : M → P is smooth, then we denote by T f or f* the derived mapping TM → TP. We have ker T f = { Y∈TM such that T f(Y) = 0 } .
- [13] For another definition of FL (which is logically independent of the almost tangent structure J), see ref. [1].
- [14] J.M. Nester, Invariant Derivation of the Euler-Lagrange Equations (in preparation).
- [15] We assume that all of the Pl appearing in the algorithm are in fact imbedded submanifolds. Otherwise, one must resort to standard tricks, e. g., work locally where everything is manageable (see Section IV).
- [16] In fact, there does not even exist a unique local Hamiltonian formalism corresponding to such a Lagrangian system, as, e. g., with L = 1/4v4 - 1/2v2 .
- [17] In the following, TM1/1 denotes the ω1-orthogonal complement (see [12]).
- [18] M.J. Gotay, Presymplectic Manifolds, Geometric Constraint Theory and the Dirac–Bergmann Theory of Constraints, Ph. D. Thesis, University of Maryland, 1979.
Citations in EuDML Documents
top- Mark J. Gotay, James M. Nester, Presymplectic lagrangian systems. II : the second-order equation problem
- Sergio de Filippo, Giovanni Landi, Giuseppe Marmo, Gaetano Vilasi, Tensor fields defining a tangent bundle structure
- F. Barone, R. Grassini, G. Mendella, A unified approach to constrained mechanical systems as implicit differential equations
- Monika Havelková, A geometric analysis of dynamical systems with singular Lagrangians
- Monika Havelková, Symmetries of a dynamical system represented by singular Lagrangians
- M. C. Muñoz Lecanda, N. Roman Roy, Lagrangian theory for presymplectic systems
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.