On the wave equation in curved spacetime

Yvonne Choquet-Bruhat; Demetrios Christodoulou; Mauro Francaviglia

Annales de l'I.H.P. Physique théorique (1979)

  • Volume: 31, Issue: 4, page 399-414
  • ISSN: 0246-0211

How to cite

top

Choquet-Bruhat, Yvonne, Christodoulou, Demetrios, and Francaviglia, Mauro. "On the wave equation in curved spacetime." Annales de l'I.H.P. Physique théorique 31.4 (1979): 399-414. <http://eudml.org/doc/76057>.

@article{Choquet1979,
author = {Choquet-Bruhat, Yvonne, Christodoulou, Demetrios, Francaviglia, Mauro},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {waves on curved background; existence theorems for the wave equation; source terms with non-compact support; energy estimates},
language = {eng},
number = {4},
pages = {399-414},
publisher = {Gauthier-Villars},
title = {On the wave equation in curved spacetime},
url = {http://eudml.org/doc/76057},
volume = {31},
year = {1979},
}

TY - JOUR
AU - Choquet-Bruhat, Yvonne
AU - Christodoulou, Demetrios
AU - Francaviglia, Mauro
TI - On the wave equation in curved spacetime
JO - Annales de l'I.H.P. Physique théorique
PY - 1979
PB - Gauthier-Villars
VL - 31
IS - 4
SP - 399
EP - 414
LA - eng
KW - waves on curved background; existence theorems for the wave equation; source terms with non-compact support; energy estimates
UR - http://eudml.org/doc/76057
ER -

References

top
  1. [1] J. Leray, Hyperbolic differential equations, Princeton, 1952, I. A. S. ed. Zbl0588.35002MR80849
  2. [2] Y. Choquet-Bruhat, Hyperbolic pa rtial differential equations on a manifold. Battelle Rencontres (1967), C. De Witt and J. Wheeler ed., Benjamin, 1968. Zbl0169.43202MR239299
  3. [3] R. Geroch, « Domain of dependence », J. Math. Phys., t. 11, 1970, p. 437-449. Zbl0189.27602MR270697
  4. [4] G. De Rham, « Variétés différentiables », Hermann, 1955. Zbl0065.32401
  5. [5] A. Lichnerowicz, « Propagateurs et commutateurs », Ann. I. H. E. S., n° 10, 1961. Zbl0098.42607

Citations in EuDML Documents

top
  1. Yvonne Choquet Bruhat, Global existence theorems for hyperbolic harmonic maps
  2. Jean-Philippe Nicolas, Champs de spin 3 / 2 et relativité générale
  3. Pierre-Yves Jeanne, Optique Géométrique et invariance de jauge : Solutions oscillantes d’amplitude critique pour les équations de Yang-Mills
  4. J. Dimock, Bernard S. Kay, Classical wave operators and asymptotic quantum field operators on curved space-times
  5. Norbert Noutchegueme, Solutions semi-globales asymptotiquement minkowskiennes pour les équations d'Einstein

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.