Asymptotic observables and Coulomb scattering for the Dirac equation

Bernd Thaller; Volker Enss

Annales de l'I.H.P. Physique théorique (1986)

  • Volume: 45, Issue: 2, page 147-171
  • ISSN: 0246-0211

How to cite

top

Thaller, Bernd, and Enss, Volker. "Asymptotic observables and Coulomb scattering for the Dirac equation." Annales de l'I.H.P. Physique théorique 45.2 (1986): 147-171. <http://eudml.org/doc/76334>.

@article{Thaller1986,
author = {Thaller, Bernd, Enss, Volker},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {long-time behaviour of relativistic scattering states; propagation properties in phase space; geometric scattering theory; Schrödinger equation; Dirac equation of relativistic quantum mechanics; asymptotic observables; Zitterbewegung; asymptotic completeness for the relativistic Coulomb system},
language = {eng},
number = {2},
pages = {147-171},
publisher = {Gauthier-Villars},
title = {Asymptotic observables and Coulomb scattering for the Dirac equation},
url = {http://eudml.org/doc/76334},
volume = {45},
year = {1986},
}

TY - JOUR
AU - Thaller, Bernd
AU - Enss, Volker
TI - Asymptotic observables and Coulomb scattering for the Dirac equation
JO - Annales de l'I.H.P. Physique théorique
PY - 1986
PB - Gauthier-Villars
VL - 45
IS - 2
SP - 147
EP - 171
LA - eng
KW - long-time behaviour of relativistic scattering states; propagation properties in phase space; geometric scattering theory; Schrödinger equation; Dirac equation of relativistic quantum mechanics; asymptotic observables; Zitterbewegung; asymptotic completeness for the relativistic Coulomb system
UR - http://eudml.org/doc/76334
ER -

References

top
  1. [1] P.R. Chernoff, Essential self-adjointness of powers of generators of hyperbolic equations. J. Func. Anal., t. 12, 1973, p. 401-414. Zbl0263.35066MR369890
  2. [2] J. Dollard and G. Velo, Asymptotic behaviour of a Dirac particle in a Coulomb field. Il Nuovo Cimento, t. 45, 1966, p. 801-812. 
  3. [3] V. Enss, Geometric methods in spectral and scattering theory of Schrödinger operators. In: Rigorous Atomic and Molecular Physics, G. Velo, A. S. Wightman (eds). New York, Plenum, 1981. 
  4. [4] V. Enss, Asymptotic observables on scattering states. Commun. Math. Phys., t. 89, 1983, p. 245-268. Zbl0543.47008MR709466
  5. [5] V. Enss, Propagation properties of quantum scattering states. J. Func. Anal., t. 52, 1983, p. 219-251. Zbl0543.47009MR707205
  6. [6] V. Enss, Quantum scattering theory for two and three-body systems with potentials of short and long range. In: Schrödinger Operators, S. Graffi (ed.), Lecture Notes in Mathem., 1159, Springer, Berlin, 1985, p. 39-176. Zbl0585.35023MR824987
  7. [7] W. Hunziker, On the space-time behaviour of Schrödinger wavefunctions. J. Math. Phys., t. 7, 1966, p. 300-304. Zbl0151.43801MR193939
  8. [8] A.J. Kalnay, The localization problem. In: Problems in the Foundations of Physics, t. 4, M. Bunge (ed.). Berlin, Springer, 1971. 
  9. [9] M. Klaus and R. Wüst, Characterization and uniqueness of distinguished self–adjoint extensions of Dirac-operators. Commun. Math. Phys., t. 64, 1979, p. 171-176. Zbl0408.47022MR519923
  10. [10] Pl. Muthuramalingam, Scattering theory by Enss' method for operator valued matrices: Dirac operator in an electric field, J. Math. Soc. Japan, t. 37, 1985, p. 415-432. Zbl0581.47006MR792984
  11. [11] Pl Muthuramalingam and K.B. Sinha, Asymptotic completeness in long-range scattering II. Ann. scient. Ec. Norm. Sup., t. 18, 1985, p. 57-87. Zbl0584.47009MR803195
  12. [12] G. Nenciu, Self-adjointness and invariance of the essential spectrum for Dirac operators defined as quadratic forms. Commun. Math. Phys., t. 48, 1976, p. 235-247. Zbl0349.47014MR421456
  13. [13] P.A. Perry, Scattering theory by the Enss Method. Mathematical Reports, t. 1, Harwood, Chur., 1983. Zbl0529.35004MR752694
  14. [14] C. Radin and B. Simon, Invariant domains for the time-dependent Schrödinger equation. J. Diff. Equ., t. 29, 1978, p. 289-296. Zbl0351.34004MR502354
  15. [15] M. Reed and B. Simon, Methods of Modern Mathematical Physics I, Functional Analysis. New York, Academic Press, 1972. Zbl0242.46001MR493419
  16. [16] M. Reed and B. Simon, Methods of Modern Mathematical Physics II, Fourier Analysis, Self-Adjointness. New York, Academic Press, 1975. Zbl0308.47002MR493420
  17. [17] M. Reed and B. Simon, Methods of Modern Mathematical Physics III, Scattering Theory. New York, Academic Press, 1979. Zbl0405.47007MR529429
  18. [18] E. Schrödinger, Sitzungsb. Preuss. Akad. Wiss., Phys.-Math. Kl., t. 24, 1930, p. 418. JFM56.0754.06
  19. [19] K.B. Sinha and Pl. Muthuramalingam, Asymptotic evolution of certain observables and completeness in Coulomb scattering I. J. Func. Anal., t. 55, 1984, p. 323- 343. Zbl0531.47008MR734802
  20. [20] R. Wüst, Distinguished self-adjoint extension of Dirac operators constructed by means of cut-off potentials. Math. Z., t. 141, 1975, p. 93-98. Zbl0311.47020MR365233
  21. [21] B. Thaller, Relativistic scattering theory for long-range potentials of non-electrostatic type. Lett. Math. Phys., to appear 1986. Zbl0643.35078MR849249
  22. [22] Pl Muthumaralingam and K.B. Sinha, Existence and completeness of wave operators for the Dirac operator in an electro-magnetic field with long-range potentials. Preprint, New Delhi, 1986. MR989018

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.