Distortion analyticity and molecular resonance curves

W. Hunziker

Annales de l'I.H.P. Physique théorique (1986)

  • Volume: 45, Issue: 4, page 339-358
  • ISSN: 0246-0211

How to cite

top

Hunziker, W.. "Distortion analyticity and molecular resonance curves." Annales de l'I.H.P. Physique théorique 45.4 (1986): 339-358. <http://eudml.org/doc/76343>.

@article{Hunziker1986,
author = {Hunziker, W.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Resonance energies; discrete eigenvalues of non-selfadjoint operators; complex distortions; bound state; resonance; existence and uniqueness of solutions to the Schrödinger equation for n electrons in the time- dependent field of classically moving (non-colliding) nuclei},
language = {eng},
number = {4},
pages = {339-358},
publisher = {Gauthier-Villars},
title = {Distortion analyticity and molecular resonance curves},
url = {http://eudml.org/doc/76343},
volume = {45},
year = {1986},
}

TY - JOUR
AU - Hunziker, W.
TI - Distortion analyticity and molecular resonance curves
JO - Annales de l'I.H.P. Physique théorique
PY - 1986
PB - Gauthier-Villars
VL - 45
IS - 4
SP - 339
EP - 358
LA - eng
KW - Resonance energies; discrete eigenvalues of non-selfadjoint operators; complex distortions; bound state; resonance; existence and uniqueness of solutions to the Schrödinger equation for n electrons in the time- dependent field of classically moving (non-colliding) nuclei
UR - http://eudml.org/doc/76343
ER -

References

top
  1. [1] P. Aventini, R. Seiler, On the electronic spectrum of the diatomic molecular ion. Commun. Math. Phys., t. 41, 1975, p. 119-134. MR371301
  2. [2] E. Balslev, J.M. Combes, Spectral properties of many-body Schrödinger operators with dilation analytic interactions. Commun. Math. Phys., t. 22, 1971, p. 280-294. Zbl0219.47005MR345552
  3. [3] J.M. Combes, P. Duclos, R. Seiler, The Born-Oppenheimer approximation, in: Rigorous atomic and molecular physics, Eds. G. Velo and A. S. Wightman. New York, London, Plenum Press, 1981. 
  4. [4] H.L. Cycon, Resonances defined by modified dilations. Helv. Phys. Acta, t. 58, 1985, p. 969-981. MR821113
  5. [5] P. Deift, W. Hunziker, B. Simon, E. Vock, Pointwise bounds on eigenfunctions and wave packets in N-body quantum systems. IV. Commun. Math. Phys,, t. 64, 1978, p. 1-34. Zbl0419.35079MR516993
  6. [6] R. Froese, I. Herbst, Exponential bounds and absence of positive eigenvalues for N-body Schrödinger operators. Commun. Math. Phys., t. 87, 1983, p. 429-447. Zbl0509.35061MR682117
  7. [7] W. Hunziker, C. Günther, Bound states in dipole fields and continuity properties of electronic spectra. Helv. Phys. Acta, t. 53, 1980, p. 201-208. MR597559
  8. [8] T. Kato, Perturbation theory for linear operators. Berlin, Heidelberg, New York, Springer, 1966. Zbl0148.12601MR203473
  9. [9] M. Klaus, On H2+ for small internuclear separation. J. Phys. A : Math. Gen., t. 16, 1983, p. 2709-2720. MR715732
  10. [10] M. Reed, B. Simon, Methods of modern mathematical physics. IV. Analysis of operators. New York, Academic Press, 1978. Zbl0401.47001MR493421
  11. [11] I.M. Sigal, Complex transformation method and resonances in one-body quantum systems. Ann. Inst. Henri Poincaré, t. 41, 1984, p. 103-114. Zbl0568.47008MR760129
  12. [12] B. Simon, The definition of molecular resonance curves by the method of exterior complex scaling. Phys. Lett., t. 71A, 1979, p. 211-214. 
  13. [13] T. Kato, Integration of the equation of evolution in a Banach space, J. Math. Soc. Japan, t. 5, 1953, p. 208-234. Zbl0052.12601MR58861
  14. [14] U. Wüller, Existence of the time evolution for Schrödinger operators with time dependent singular potentials. Ann. Inst. Henri Poincaré, t. 44, 1986, p. 155-171. Zbl0598.35033MR839282
  15. [15] K. Yajima, Existence of solutions for Schrödinger evolution equations. University of Tokyo, preprint, 1986. MR891945
  16. [16] K. Yosida, Functional analysis. New York, Academic Press, 1965. Zbl0126.11504MR180824

Citations in EuDML Documents

top
  1. C. Gérard, Prolongement méromorphe de la matrice de scattering pour des problèmes à deux corps à longue portée
  2. George A. Hagedorn, Analysis of a nontrivial, explicitly solvable multichannel scattering system
  3. Erik Balslev, Erik Skibsted, Asymptotic and analytic properties of resonance functions
  4. T. Kato, K. Yajima, Dirac equations with moving nuclei
  5. Xue-Ping Wang, Resonances of N-body Schrödinger operators with stark effect
  6. Shu Nakamura, On an example of phase-space tunneling
  7. Antoine Bommier, Prolongement méromorphe de la matrice de diffusion pour les problèmes à N corps à longue portée
  8. J. Sjöstrand, Estimations sur les résonances pour le laplacien avec une perturbation à support compact
  9. P. Duclos, P. Exner, P. Šťovíček, Curvature-induced resonances in a two-dimensional Dirichlet tube
  10. S. Nakamura, Distortion analyticity for two-body Schrödinger operators

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.