High order corrections to the time-independent Born-Oppenheimer approximation. — I. Smooth potentials

George A. Hagedorn

Annales de l'I.H.P. Physique théorique (1987)

  • Volume: 47, Issue: 1, page 1-16
  • ISSN: 0246-0211

How to cite

top

Hagedorn, George A.. "High order corrections to the time-independent Born-Oppenheimer approximation. — I. Smooth potentials." Annales de l'I.H.P. Physique théorique 47.1 (1987): 1-16. <http://eudml.org/doc/76369>.

@article{Hagedorn1987,
author = {Hagedorn, George A.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {quantum mechanical systems; eigenvalues; eigenvectors; Hamiltonian; Born- Oppenheimer approximation},
language = {eng},
number = {1},
pages = {1-16},
publisher = {Gauthier-Villars},
title = {High order corrections to the time-independent Born-Oppenheimer approximation. — I. Smooth potentials},
url = {http://eudml.org/doc/76369},
volume = {47},
year = {1987},
}

TY - JOUR
AU - Hagedorn, George A.
TI - High order corrections to the time-independent Born-Oppenheimer approximation. — I. Smooth potentials
JO - Annales de l'I.H.P. Physique théorique
PY - 1987
PB - Gauthier-Villars
VL - 47
IS - 1
SP - 1
EP - 16
LA - eng
KW - quantum mechanical systems; eigenvalues; eigenvectors; Hamiltonian; Born- Oppenheimer approximation
UR - http://eudml.org/doc/76369
ER -

References

top
  1. [1] M. Born, R. Oppenheimer, Zur Quantentheorie der Molekeln. Ann. Phys. (Leipzig), t. 84, 1927, p. 457-484. Zbl53.0845.04JFM53.0845.04
  2. [2] J.M. Combes, On the Born-Oppenheimer Approximation. In: International Symposium on Mathematical Problems in Theoretical Physics (ed. H. Araki), p. 467-471. Berlin, Heidelberg, New York, Springer, 1975. MR673617
  3. [3] J.-M. Combes, The Born-Oppenheimer Approximation. In: The Schrödinger Equation (eds. W. Thirring, P. Urban), p. 139-159. Wien, New York, Springer, 1977. Zbl0372.47026MR673617
  4. [4] J.-M. Combes, P. Duclos and R. Seiler, The Born-Oppenheimer Approximation. In: Rigorous Atomic and Molecular Physics (eds. G. Velo, A. Wightman), p. 185-212. New York, Plenum, 1981. 
  5. [5] G.A. Hagedorn, A Time Dependent Born-Oppenheimer Approximation. Commun. Math. Phys., t. 77, 1980, p. 1-19. Zbl0448.70013MR588684
  6. [6] G.A. Hagedorn, Higher Order Corrections to the Time-Dependent Born-Oppenheimer Approximation I: Smooth Potentials. Ann. Math., t. 124, 1986, p. 571-590. Erratum to appear 1987. Zbl0619.35094MR866709
  7. [7] G.A. Hagedorn, Multiple Scales and the Time-Independent Born-Oppenheimer Approximation (submitted to the proceedings of The International Conference on Differential Equations and Mathematical Physics, Birmingham, Alabama. March, 1986). 
  8. [8] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. IV, Analysis of Operators, New York, London, Academic Press, 1978. Zbl0401.47001
  9. [9] R. Seiler, Does the Born-Oppenheimer Approximation Work ?Helv. Phys. Acta, t. 46, 1973, p. 230-234. 
  10. [10] B. Simon, Semiclassical Analysis of Low Lying Eigenvalues. I. Non-degenerate Minima: Asymptotic Expansions. Ann. Inst. Henri Poincaré Sect A, t. 38, 1983, p. 295-308. Zbl0526.35027MR708966

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.