A Morse theory for light rays on stably causal lorentzian manifolds
F. Giannoni; A. Masiello; P. Piccione
Annales de l'I.H.P. Physique théorique (1998)
- Volume: 69, Issue: 4, page 359-412
- ISSN: 0246-0211
Access Full Article
topHow to cite
topGiannoni, F., Masiello, A., and Piccione, P.. "A Morse theory for light rays on stably causal lorentzian manifolds." Annales de l'I.H.P. Physique théorique 69.4 (1998): 359-412. <http://eudml.org/doc/76805>.
@article{Giannoni1998,
author = {Giannoni, F., Masiello, A., Piccione, P.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Lorentzian manifolds; light rays; Fermat principle; Morse theory; gravitational lenses},
language = {eng},
number = {4},
pages = {359-412},
publisher = {Gauthier-Villars},
title = {A Morse theory for light rays on stably causal lorentzian manifolds},
url = {http://eudml.org/doc/76805},
volume = {69},
year = {1998},
}
TY - JOUR
AU - Giannoni, F.
AU - Masiello, A.
AU - Piccione, P.
TI - A Morse theory for light rays on stably causal lorentzian manifolds
JO - Annales de l'I.H.P. Physique théorique
PY - 1998
PB - Gauthier-Villars
VL - 69
IS - 4
SP - 359
EP - 412
LA - eng
KW - Lorentzian manifolds; light rays; Fermat principle; Morse theory; gravitational lenses
UR - http://eudml.org/doc/76805
ER -
References
top- [1] R.R. Adams, Sobolev spaces. Ac. Press. New York, 1975. Zbl0314.46030MR450957
- [2] F. Antonacci and P. Piccione, A Fermat principle on Lorentzian manifolds and applications, Appl. Math. Lett., Vol. 9, 1996, pp. 91-96. Zbl0855.53038MR1383689
- [3] J.K. Beem and P.H. Ehrlich and K.L. Easley, Global Lorentzian Geometry. Marcel Dekker. New York, 1996. Zbl0846.53001MR1384756
- [4] V. Benci, A new approach to Morse-Conley theory and some applications, Ann. Mat. Pura ed Appl., Vol. 158, 1991, pp. 231-305. Zbl0778.58011MR1131853
- [5] R. Bott, Lectures on Morse Theory old and new, Bull. Am. Math. Soc., Vol. 7, 1982, pp. 331-358. Zbl0505.58001MR663786
- [6] A. Capozzi, D. Fortunato and C. Greco, Null geodesics on Lorentz manifolds, in Nonlinear variational problems and partial differential equations, Isola d'Elba 1990 (A. MARINO and M.K.V. MURTHY eds.), pp. 81-84. Pitman research notes in Mathematics, Vol. 320. Longman, London1995. Zbl0890.53042MR1330004
- [7] K. Deimiling, Nonlinear Functional Analysis. Springer-Verlag, Berlin1985. Zbl0559.47040MR787404
- [8] D. Fortunato, F. Giannoni and A. Masiello, A Fermat principle for stationary space-times with applications to light rays, J. Geom. Phys., Vol. 15, 1995, pp. 159-188. Zbl0819.53037MR1310949
- [9] A. Germinario, Morse Theory for light rays without nondegeneration assumptions, Nonlinear World, Vol. 4, 1997, pp. 173-206. Zbl0911.58006MR1485197
- [10] F. Giannoni and A. Masiello, Morse Relations for geodesics on stationary Lorentzian manifolds with boundary, Top. Meth. in Nonlinear Anal., Vol. 6, 1995, pp. 1-30. Zbl0852.58016MR1391942
- [11] F. Giannoni and A. Masiello, On a Fermat principle in General Relativity. A Ljustemik–Schnirelmann theory for light rays, Ann. Mat. Pura Appl., in press. Zbl0983.58008
- [12] F. Giannoni and A. Masiello, On a Fermat principle in General Relativity. A Morse Theory for light rays, Gen. Rel. Grav., Vol. 28, 1996, pp. 855-897. Zbl0855.53039MR1398288
- [13] F. Giannoni, A. Masiello and P. Piccione, A variational theory for light rays on causally stable Lorentzian manifolds: Regularity and multiplicity results, Comm. Math. Phys., Vol. 187, 1997, pp. 375-415. Zbl0884.53048MR1463834
- [14] F. Giannoni, A. Masiello and P. Piccione, A variational theory for light rays on causally stable Lorentzian manifolds II: Existence and multiplicity results, preprint n. 16/96 Dip. Mat. Univ. Bari, 1996.
- [15] S.W. Hawking and G.F. Ellis, The Large Scale Structure of Space-Time. Cambridge University Press, London/New York, 1973. Zbl0265.53054MR424186
- [16] L.L. Kelley, General Topology. Van Nostrand, Princeton1955. Zbl0066.16604MR70144
- [17] W. Klingenberg, Riemannian Geometry. W. de Gruyter, Berlin/New York, 1982. Zbl0495.53036MR666697
- [18] I. Kovner, Fermat principles for arbitrary space-times, Astrophys. J., Vol. 351, 1990, pp. 114-120.
- [19] T. Levi-Civita, Fondamenti di Meccanica Relativistica. Zanichelli, Bologna1928. JFM54.0939.01
- [20] A. Masiello, Variational Methods in Lorentzian Geometry. Pitman Research Notes in Mathematics, 309. Longman, London1994. Zbl0816.58001MR1294140
- [21 ] A. Masiello and P. Piccione, Shortening null geodesics in stationary Lorentzian manifolds. Applications to closed light rays, Diff. Geom. Appl., Vol. 8, 1998, pp. 47-70. Zbl0901.58010MR1601534
- [22] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems. Springer–Verlag, Berlin, 1989. Zbl0676.58017MR982267
- [23] R. Mckenzie, A gravitational lens produces an odd number of images, J. Math. Phys., Vol. 26, 1985, pp. 1592-1596. Zbl0569.53043MR793300
- [24] J. Milnor, Morse Theory. Princeton University Press, Princeton, 1963. Zbl0108.10401MR163331
- [25] M. Morse, The Calculus of Variations in the Large. Coll. Lect. Am. Math. Soc., Vol. 18, 1934. Zbl0011.02802JFM60.0450.01
- [26] B. O'Neill, Semi-Riemannian Geometry with applications to Relativity. Acad. Press, New-York-London, 1983. Zbl0531.53051
- [27] R. Palais, Morse Theory on Hilbert manifolds, Topology, Vol. 2, 1963, pp. 299-340. Zbl0122.10702MR158410
- [28] V. Perlick, On Fermat's principle in General Relativity: I. The general case, Class. Quantum Grav., Vol. 7, 1990, pp. 1319-1331. Zbl0707.53054MR1064182
- [29] V. Perlick, Infinite dimensional Morse Theory and Fermat's principle in general relativity. I, J. Math. Phys., Vol. 36, 1995, pp. 6915-6928. Zbl0854.58014MR1359671
- [30] A. Petters, Morse Theory and gravitational microlensing, J. Math. Phys., 1992, Vol. 33, pp. 1915-1931. MR1159012
- [3 1 ] A. Petters, Multiplane gravitational lensing. I. Morse Theory and image counting, J. Math. Phys., Vol. 36, 1995, pp. 4263-4275. Zbl0854.57027MR1341990
- [32] A. Petters, Multiplane gravitational lensing. II. Global Geometry of caustics, J. Math. Phys., Vol. 36, 1995, pp. 4276-4295. Zbl0854.57028MR1341991
- [33] P. Schneider, J. Ehlers and E. Falco, Gravitational lensing. Springer, Berlin, 1992.
- [34] J.P. Serre, Homologie singuliere des espaces fibres, Ann. Math., Vol. 54, 1951, pp. 425-505. Zbl0045.26003MR45386
- [35] E.H. Spanier, Algebraic Topology. Mc Graw Hill. New York, 1966. Zbl0145.43303MR210112
- [36] K. Uhlenbeck, A Morse Theory for geodesics on a Lorentz manifold, Topology, Vol. 14, 1975, pp. 69-90. Zbl0323.58010MR383461
- [37] H. Weyl, Zur Gravitationstheorie, Annln. Phys., Vol. 54, 1917, pp. 117-145. JFM46.1303.01
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.