A Morse theory for light rays on stably causal lorentzian manifolds

F. Giannoni; A. Masiello; P. Piccione

Annales de l'I.H.P. Physique théorique (1998)

  • Volume: 69, Issue: 4, page 359-412
  • ISSN: 0246-0211

How to cite

top

Giannoni, F., Masiello, A., and Piccione, P.. "A Morse theory for light rays on stably causal lorentzian manifolds." Annales de l'I.H.P. Physique théorique 69.4 (1998): 359-412. <http://eudml.org/doc/76805>.

@article{Giannoni1998,
author = {Giannoni, F., Masiello, A., Piccione, P.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Lorentzian manifolds; light rays; Fermat principle; Morse theory; gravitational lenses},
language = {eng},
number = {4},
pages = {359-412},
publisher = {Gauthier-Villars},
title = {A Morse theory for light rays on stably causal lorentzian manifolds},
url = {http://eudml.org/doc/76805},
volume = {69},
year = {1998},
}

TY - JOUR
AU - Giannoni, F.
AU - Masiello, A.
AU - Piccione, P.
TI - A Morse theory for light rays on stably causal lorentzian manifolds
JO - Annales de l'I.H.P. Physique théorique
PY - 1998
PB - Gauthier-Villars
VL - 69
IS - 4
SP - 359
EP - 412
LA - eng
KW - Lorentzian manifolds; light rays; Fermat principle; Morse theory; gravitational lenses
UR - http://eudml.org/doc/76805
ER -

References

top
  1. [1] R.R. Adams, Sobolev spaces. Ac. Press. New York, 1975. Zbl0314.46030MR450957
  2. [2] F. Antonacci and P. Piccione, A Fermat principle on Lorentzian manifolds and applications, Appl. Math. Lett., Vol. 9, 1996, pp. 91-96. Zbl0855.53038MR1383689
  3. [3] J.K. Beem and P.H. Ehrlich and K.L. Easley, Global Lorentzian Geometry. Marcel Dekker. New York, 1996. Zbl0846.53001MR1384756
  4. [4] V. Benci, A new approach to Morse-Conley theory and some applications, Ann. Mat. Pura ed Appl., Vol. 158, 1991, pp. 231-305. Zbl0778.58011MR1131853
  5. [5] R. Bott, Lectures on Morse Theory old and new, Bull. Am. Math. Soc., Vol. 7, 1982, pp. 331-358. Zbl0505.58001MR663786
  6. [6] A. Capozzi, D. Fortunato and C. Greco, Null geodesics on Lorentz manifolds, in Nonlinear variational problems and partial differential equations, Isola d'Elba 1990 (A. MARINO and M.K.V. MURTHY eds.), pp. 81-84. Pitman research notes in Mathematics, Vol. 320. Longman, London1995. Zbl0890.53042MR1330004
  7. [7] K. Deimiling, Nonlinear Functional Analysis. Springer-Verlag, Berlin1985. Zbl0559.47040MR787404
  8. [8] D. Fortunato, F. Giannoni and A. Masiello, A Fermat principle for stationary space-times with applications to light rays, J. Geom. Phys., Vol. 15, 1995, pp. 159-188. Zbl0819.53037MR1310949
  9. [9] A. Germinario, Morse Theory for light rays without nondegeneration assumptions, Nonlinear World, Vol. 4, 1997, pp. 173-206. Zbl0911.58006MR1485197
  10. [10] F. Giannoni and A. Masiello, Morse Relations for geodesics on stationary Lorentzian manifolds with boundary, Top. Meth. in Nonlinear Anal., Vol. 6, 1995, pp. 1-30. Zbl0852.58016MR1391942
  11. [11] F. Giannoni and A. Masiello, On a Fermat principle in General Relativity. A Ljustemik–Schnirelmann theory for light rays, Ann. Mat. Pura Appl., in press. Zbl0983.58008
  12. [12] F. Giannoni and A. Masiello, On a Fermat principle in General Relativity. A Morse Theory for light rays, Gen. Rel. Grav., Vol. 28, 1996, pp. 855-897. Zbl0855.53039MR1398288
  13. [13] F. Giannoni, A. Masiello and P. Piccione, A variational theory for light rays on causally stable Lorentzian manifolds: Regularity and multiplicity results, Comm. Math. Phys., Vol. 187, 1997, pp. 375-415. Zbl0884.53048MR1463834
  14. [14] F. Giannoni, A. Masiello and P. Piccione, A variational theory for light rays on causally stable Lorentzian manifolds II: Existence and multiplicity results, preprint n. 16/96 Dip. Mat. Univ. Bari, 1996. 
  15. [15] S.W. Hawking and G.F. Ellis, The Large Scale Structure of Space-Time. Cambridge University Press, London/New York, 1973. Zbl0265.53054MR424186
  16. [16] L.L. Kelley, General Topology. Van Nostrand, Princeton1955. Zbl0066.16604MR70144
  17. [17] W. Klingenberg, Riemannian Geometry. W. de Gruyter, Berlin/New York, 1982. Zbl0495.53036MR666697
  18. [18] I. Kovner, Fermat principles for arbitrary space-times, Astrophys. J., Vol. 351, 1990, pp. 114-120. 
  19. [19] T. Levi-Civita, Fondamenti di Meccanica Relativistica. Zanichelli, Bologna1928. JFM54.0939.01
  20. [20] A. Masiello, Variational Methods in Lorentzian Geometry. Pitman Research Notes in Mathematics, 309. Longman, London1994. Zbl0816.58001MR1294140
  21. [21 ] A. Masiello and P. Piccione, Shortening null geodesics in stationary Lorentzian manifolds. Applications to closed light rays, Diff. Geom. Appl., Vol. 8, 1998, pp. 47-70. Zbl0901.58010MR1601534
  22. [22] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems. Springer–Verlag, Berlin, 1989. Zbl0676.58017MR982267
  23. [23] R. Mckenzie, A gravitational lens produces an odd number of images, J. Math. Phys., Vol. 26, 1985, pp. 1592-1596. Zbl0569.53043MR793300
  24. [24] J. Milnor, Morse Theory. Princeton University Press, Princeton, 1963. Zbl0108.10401MR163331
  25. [25] M. Morse, The Calculus of Variations in the Large. Coll. Lect. Am. Math. Soc., Vol. 18, 1934. Zbl0011.02802JFM60.0450.01
  26. [26] B. O'Neill, Semi-Riemannian Geometry with applications to Relativity. Acad. Press, New-York-London, 1983. Zbl0531.53051
  27. [27] R. Palais, Morse Theory on Hilbert manifolds, Topology, Vol. 2, 1963, pp. 299-340. Zbl0122.10702MR158410
  28. [28] V. Perlick, On Fermat's principle in General Relativity: I. The general case, Class. Quantum Grav., Vol. 7, 1990, pp. 1319-1331. Zbl0707.53054MR1064182
  29. [29] V. Perlick, Infinite dimensional Morse Theory and Fermat's principle in general relativity. I, J. Math. Phys., Vol. 36, 1995, pp. 6915-6928. Zbl0854.58014MR1359671
  30. [30] A. Petters, Morse Theory and gravitational microlensing, J. Math. Phys., 1992, Vol. 33, pp. 1915-1931. MR1159012
  31. [3 1 ] A. Petters, Multiplane gravitational lensing. I. Morse Theory and image counting, J. Math. Phys., Vol. 36, 1995, pp. 4263-4275. Zbl0854.57027MR1341990
  32. [32] A. Petters, Multiplane gravitational lensing. II. Global Geometry of caustics, J. Math. Phys., Vol. 36, 1995, pp. 4276-4295. Zbl0854.57028MR1341991
  33. [33] P. Schneider, J. Ehlers and E. Falco, Gravitational lensing. Springer, Berlin, 1992. 
  34. [34] J.P. Serre, Homologie singuliere des espaces fibres, Ann. Math., Vol. 54, 1951, pp. 425-505. Zbl0045.26003MR45386
  35. [35] E.H. Spanier, Algebraic Topology. Mc Graw Hill. New York, 1966. Zbl0145.43303MR210112
  36. [36] K. Uhlenbeck, A Morse Theory for geodesics on a Lorentz manifold, Topology, Vol. 14, 1975, pp. 69-90. Zbl0323.58010MR383461
  37. [37] H. Weyl, Zur Gravitationstheorie, Annln. Phys., Vol. 54, 1917, pp. 117-145. JFM46.1303.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.