The functional central limit theorem for strongly mixing processes
Paul Doukhan; Pascal Massart; Emmanuel Rio
Annales de l'I.H.P. Probabilités et statistiques (1994)
- Volume: 30, Issue: 1, page 63-82
- ISSN: 0246-0203
Access Full Article
topHow to cite
topReferences
top- P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968. Zbl0172.21201MR233396
- R. Bradley, Basic Properties of Strong Mixing Conditions, Dependence in Probability and Statistics. A Survey of Recent Results, Oberwolfach, 1985, E. EBERLEIN and M. S. TAQQU Ed., Birkhäuser, 1986. Zbl0603.60034MR899990
- A. Bulinskii and P. Doukhan, Inégalités de mélange fort utilisant des normes d'Orlicz, C. R. Acad. Sci. Paris, Série I, Vol. 305, 1987, pp. 827-830. Zbl0659.60009MR923208
- Y.A. Davydov, Convergence of Distributions Generated by Stationary Stochastic Processes, Theor. Probab. Appl., Vol. 13, 1968, pp. 691-696. Zbl0181.44101
- Y.A. Davydov, Mixing Conditions for Markov Chains, Theor. Probab. Appl., Vol. 18, 1973, pp. 312-328. Zbl0297.60031MR321183
- A. Dellacherie and P.A. Meyer, Probabilité et potentiel, Masson, Paris, 1975. Zbl0323.60039
- P. Doukhan, Mixing: Properties and Examples, Preprint, Université de Paris-Sud, 91-60, 1991. MR1312160
- W. Feller, An Introduction to probability Theory and its Applications, Wiley, New York, 1950. Zbl0039.13201MR38583
- M.I. Gordin, The Central Limit Theorem for Stationary Processes, Soviet Math. Dokl., Vol. 10, 1969, pp. 1174-1176. Zbl0212.50005MR251785
- P. Hall and C.C. Heyde, Martingal Limit Theory and its Application, North-Holland, New York, 1980. Zbl0462.60045MR624435
- N. Herrndorf, A Functional Central Limit Theorem for Strongly Mixing Sequences of Random Variables, Z. Wahr. Verv. Gebiete, Vol. 69, 1985, pp. 541-550. Zbl0558.60032MR791910
- I. A. Ibragimov, Some Limit Theorems for Stationary Processes, Theor. Probab. Appl., Vol. 7, 1962, pp. 349-382. Zbl0119.14204MR148125
- I Bragimov and Y.V. Linnik, Independent and Stationary Sequences of Random Variables, Wolters-Noordhoff, Amsterdam, 1971. Zbl0219.60027MR322926
- H. Oodaira and K.I. Yoshihara, Functional Central Limit Theorems for strictly Stationary Processes Satisfying the Strong Mixing Condition, Kodai Math. Sem. Rep., Vol. 24, 1972, pp. 259-269. Zbl0245.60006MR317380
- M. Peligrad, Recent Advances in the Central Limit Theorem and its Weak Invariance Principles for Mixing Sequences of Random variables, Dependence in Probability and Statistics. A Survey of Recent Results, Oberwolfach, 1985, E. EBERLEIN and M. S. TAQQU Eds., Birkhäuser, 1986. Zbl0603.60022MR899991
- E. Rio, Covariance Inequalities for Strongly Mixing Processes, Preprint, Université de Paris- Sud, 1992.
- M. Rosenblatt, A Central Limit Theorem and a Strong Mixing Condition, Proc. Nat. Acad. Sci. U.S.A., Vol. 42, 1956, pp. 43-47. Zbl0070.13804MR74711
- Y.A. Rozanov and V.A. Volkonskii, Some Limit Theorems for Random Functions I, Theory Probab. Appl., Vol. 4, 1959, pp. 178-197. Zbl0092.33502MR121856
- V. Strassen, A Converse to the Law of the Iterated Logarithm, Z. Wahr. Verv. Gebiete, Vol. 4, 1966, pp. 265-268. Zbl0141.16501MR200965
Citations in EuDML Documents
top- Martial Longla, On dependence structure of copula-based Markov chains
- Karine Tribouley, Gabrielle Viennet, adaptive density estimation in a mixing framework
- Emmanuel Rio, Covariance inequalities for strongly mixing processes
- Emmanuel Rio, About the Lindeberg method for strongly mixing sequences
- P. Doukhan, P. Massart, E. Rio, Invariance principles for absolutely regular empirical processes
- Jérôme Dedecker, Emmanuel Rio, On the functional central limit theorem for stationary processes
- Jérôme Dedecker, Florence Merlevède, Magda Peligrad, A quenched weak invariance principle