Principes d'invariance pour les flots diagonaux sur SL(d,R)/SL(d,Z)

Stéphane Le Borgne

Annales de l'I.H.P. Probabilités et statistiques (2002)

  • Volume: 38, Issue: 4, page 581-612
  • ISSN: 0246-0203

How to cite

top

Le Borgne, Stéphane. "Principes d'invariance pour les flots diagonaux sur SL(d,R)/SL(d,Z)." Annales de l'I.H.P. Probabilités et statistiques 38.4 (2002): 581-612. <http://eudml.org/doc/77726>.

@article{LeBorgne2002,
author = {Le Borgne, Stéphane},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Siegel domain; dynamical system; invariance principle; Donsker; Strassen},
language = {fre},
number = {4},
pages = {581-612},
publisher = {Elsevier},
title = {Principes d'invariance pour les flots diagonaux sur SL(d,R)/SL(d,Z)},
url = {http://eudml.org/doc/77726},
volume = {38},
year = {2002},
}

TY - JOUR
AU - Le Borgne, Stéphane
TI - Principes d'invariance pour les flots diagonaux sur SL(d,R)/SL(d,Z)
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2002
PB - Elsevier
VL - 38
IS - 4
SP - 581
EP - 612
LA - fre
KW - Siegel domain; dynamical system; invariance principle; Donsker; Strassen
UR - http://eudml.org/doc/77726
ER -

References

top
  1. [1] A. Borel, Introduction aux groupes arithmétiques, Publications de l'Institut de Mathématique de l'Université de Strasbourg, XV. Actualités Scientifiques et Industrielles, No. 1341, Hermann, Paris, 1969. Zbl0186.33202MR244260
  2. [2] N. Bourbaki, Éléments de mathématique : groupes et algèbres de Lie. Chapitre 9. Groupes de Lie réels compacts. [Chapter 9. Compact real Lie groups], Masson, Paris, 1982. Zbl0505.22006MR682756
  3. [3] N. Bourbaki, Éléments de mathématique. Fascicule XXIX. Livre VI : Intégration. Chapitre 7. Mesure de Haar. Chapitre 8. Convolution et représentations, Actualités Scientifiques et Industrielles, No. 1306, Hermann, Paris, 1963. Zbl0156.03204MR179291
  4. [4] T. Bröcker, T. tom Dieck, Representations of compact Lie groups, Graduate Texts in Mathematics, 98, Springer-Verlag, New York, 1995. Zbl0874.22001MR1410059
  5. [5] M. Bauer, A. Broise, F. Dal'bo, F. Guimier, Y. Guivarch, M. Peigné, Propriétés de mélange pour les groupes à un paramètre de SL(d,R), Séminaires de probabilités de université de Rennes 1, 1992. MR1215499
  6. [6] L.A Bunimovich, Ya.G. Sinaĭ, N.I. Chernov, Statistical properties of two-dimensional hyperbolic billiards, Uspekhi Mat. Nauk 464 (280) (1991) 43-92, 192 (Russian) translation in: Russian Math. Surveys 46 (4) (1991) 47–106. Zbl0780.58029
  7. [7] R. Burton, M. Denker, On the central limit theorem for dynamical systems, Trans. Am. Math. Soc.302 (1987) 715-726. Zbl0628.60030MR891642
  8. [8] J.W.S. Cassels, Rational Quadratic Forms, Academic Press, 1978. Zbl0395.10029MR522835
  9. [9] J.-P. Conze, S. Le Borgne, Méthode de martingales et flot géodésique sur une surface de courbure négative constante, Ergodic Theory Dynam. Systems21 (2) (2001) 421-441. Zbl0983.37034MR1827112
  10. [10] J.-P. Conze, A. Raugi, Convergence des potentiels pour un opérateur de transfert, applications aux systèmes dynamiques et aux chaînes de Markov. Fascicule de probabilités, Publ. Inst. Rech. Math. Rennes, Univ. Rennes I, Rennes, 1998. Zbl0983.60071MR1794947
  11. [11] Dolgopyat D., Limit theorems for partially hyperbolic systems, preprint. Zbl1031.37031MR2034323
  12. [12] M. Gordin, The central limit theorem for stationary processes, Soviet Math. Dokl.10 (1969) 1174-1176, translation from Dokl. Akad. Nauk SSSR 188 (1969) 739–741. Zbl0212.50005
  13. [13] Y. Guivarc'h, J. Hardy, Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d'Anosov, Ann. Inst. H. Poincaré Probab. Statist.24 (1) (1988) 73-98. Zbl0649.60041MR937957
  14. [14] P. Hall, C.C. Heyde, Martingale Limit Theory and its Application, Probability and Mathematical Statistics, Academic Press, New York, 1980. Zbl0462.60045MR624435
  15. [15] R. Howe, E.-C. Tan, Nonabelian harmonic analysis. Applications of SL(2,R). Universitext, Springer, New York, 1992. Zbl0768.43001MR1151617
  16. [16] A. Katok, R. Spatzier, First cohomology of Anosov actions of higher rank abelian groups and applications to rigidity, Inst. Hautes Études Sci. Publ. Math.76 (1994) 131-156. Zbl0819.58027MR1307298
  17. [17] Kleinbock D.Y., Margulis G.A., Bounded orbits of nonquasiunipotent flows on homogeneous spaces, in: Sinaĭ's Moscow Seminar on Dynamical Systems, Amer. Math. Soc. Transl. Ser. 2, 171, pp. 141–172. Zbl0843.22027
  18. [18] S. Le Borgne, Limit theorems for non-hyperbolic automorphisms of the torus, Israel J. Math.109 (1999) 61-73. Zbl0989.37001MR1679589
  19. [19] Y. Le Jan, The central limit theorem for the geodesic flow on noncompact manifolds of constant negative curvature, Duke Math. J.74 (1) (1994) 159-175. Zbl0809.58031MR1271468
  20. [20] M. Ratner, The central limit theorem for geodesic flows on n-dimensional manifolds of negative curvature, Israel J. Math.16 (1973) 181-197. Zbl0283.58010MR333121
  21. [21] Ja.G. Sinaĭ, The central limit theorem for geodesic flows on manifolds of constant negative curvature, Soviet Math. Dokl.1 (1960) 983-987. Zbl0129.31103MR125607
  22. [22] D. Volny, Counter examples to the central limit problem for stationary dependent random variables, Yokohama Math. J.36 (1988) 70-78. Zbl0663.60022MR978876
  23. [23] G. Warner, Harmonic analysis on semi-simple Lie groups. I., Die Grundlehren der mathematischen Wissenschaften, Band 188, Springer, New York, 1972. Zbl0265.22020MR498999
  24. [24] L.-S. Young, Statistical properties of dynamical systems with some hyperbolicity, Ann. of Math. (2)147 (3) (1998) 585-650. Zbl0945.37009MR1637655

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.