Irregular semi-convex gradient systems perturbed by noise and application to the stochastic Cahn–Hilliard equation
Giuseppe Da Prato; Arnaud Debussche; Luciano Tubaro
Annales de l'I.H.P. Probabilités et statistiques (2004)
- Volume: 40, Issue: 1, page 73-88
- ISSN: 0246-0203
Access Full Article
topHow to cite
topDa Prato, Giuseppe, Debussche, Arnaud, and Tubaro, Luciano. "Irregular semi-convex gradient systems perturbed by noise and application to the stochastic Cahn–Hilliard equation." Annales de l'I.H.P. Probabilités et statistiques 40.1 (2004): 73-88. <http://eudml.org/doc/77800>.
@article{DaPrato2004,
author = {Da Prato, Giuseppe, Debussche, Arnaud, Tubaro, Luciano},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {stochastic Cahn-Hilliard equation; Kolmogorov operator},
language = {eng},
number = {1},
pages = {73-88},
publisher = {Elsevier},
title = {Irregular semi-convex gradient systems perturbed by noise and application to the stochastic Cahn–Hilliard equation},
url = {http://eudml.org/doc/77800},
volume = {40},
year = {2004},
}
TY - JOUR
AU - Da Prato, Giuseppe
AU - Debussche, Arnaud
AU - Tubaro, Luciano
TI - Irregular semi-convex gradient systems perturbed by noise and application to the stochastic Cahn–Hilliard equation
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2004
PB - Elsevier
VL - 40
IS - 1
SP - 73
EP - 88
LA - eng
KW - stochastic Cahn-Hilliard equation; Kolmogorov operator
UR - http://eudml.org/doc/77800
ER -
References
top- [1] S. Albeverio, R. Høegh-Krohn, Dirichlet forms and diffusion processes on rigged Hilbert spaces, Z. Wahrsch. Geb.40 (1977) 1-57. Zbl0342.60057MR455133
- [2] S. Albeverio, V. Kondratiev, M. Röckner, Dirichlet operators via stochastic analysis, J. Funct. Anal.128 (1) (1995) 102-138. Zbl0820.60042MR1317712
- [3] D. Bakry, L'hypercontractivité et son utilisation en théorie des semi-groupes, Lectures on Probability Theory, Lecture Notes in Math., vol. 1581, Springer, 1994. Zbl0856.47026MR1307413
- [4] D. Blömker, S. Majer-Paape, T. Wanner, Spinodal decomposition for the Cahn–Hilliard–Cook equation, Comm. Math. Phys.223 (2001) 553-582. Zbl0993.60061
- [5] A. Chojnowska-Michalik, B. Goldys, On regularity properties of nonsymmetric Ornstein–Uhlenbeck semigroup in Lp spaces, Stoch. Stoch. Reports59 (1996) 183-209. Zbl0876.60039
- [6] C. Cardon-Weber, Cahn–Hilliard stochastic equations: strict positivity of the density, Stochastic and Stochastic Reports72 (2002) 191-277. Zbl1002.60050
- [7] G. Da Prato, A. Debussche, Stochastic Cahn–Hilliard equation, Nonlinear Anal.26 (2) (1996) 241-263. Zbl0838.60056
- [8] G. Da Prato, A. Debussche, B. Goldys, Some properties of invariant measures of nonsymmetric dissipative stochastic systems, Probab. Theory Related Fields123 (3) (2002) 355-380. Zbl1087.60049MR1918538
- [9] G. Da Prato, L. Tubaro, Some results about dissipativity of Kolmogorov operators, Czechoslovak Math. J.51 (4) (2001) 685-699. Zbl0996.47028MR1864036
- [10] G. Da Prato, L. Tubaro, On a class of gradient systems with irregular potentials, in: Infinite Dimensional Analysis, Quantum Probability and Related Topics, vol. 4, 2001, pp. 183-194. Zbl1055.60064MR1841617
- [11] G. Da Prato, J. Zabczyk, Ergodicity for Infinite Dimensional Systems, London Mathematical Society Lecture Notes, vol. 229, Cambridge University Press, 1996. Zbl0849.60052MR1417491
- [12] G. Da Prato, J. Zabczyk, Second Order Partial Differential Equations in Hilbert Spaces, London Mathematical Society Lecture Notes, vol. 293, Cambridge University Press, 2002. Zbl1012.35001MR1985790
- [13] A. Eberle, Uniqueness and Non-Uniqueness of Singular Diffusion Operators, Lecture Notes in Mathematics, vol. 1718, Springer-Verlag, 1999. Zbl0957.60002MR1734956
- [14] V. Liskevich, M. Röckner, Strong uniqueness for a class of infinite dimensional Dirichlet operators and application to stochastic quantization, Ann. Scuola Norm. Sup. Pisa Cl. Sci.27 (1999) 69-91. Zbl0953.60056MR1658889
- [15] G. Lumer, R.S. Phillips, Dissipative operators in a Banach space, Pacific J. Math.11 (1961) 679-698. Zbl0101.09503MR132403
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.