Irregular semi-convex gradient systems perturbed by noise and application to the stochastic Cahn–Hilliard equation

Giuseppe Da Prato; Arnaud Debussche; Luciano Tubaro

Annales de l'I.H.P. Probabilités et statistiques (2004)

  • Volume: 40, Issue: 1, page 73-88
  • ISSN: 0246-0203

How to cite

top

Da Prato, Giuseppe, Debussche, Arnaud, and Tubaro, Luciano. "Irregular semi-convex gradient systems perturbed by noise and application to the stochastic Cahn–Hilliard equation." Annales de l'I.H.P. Probabilités et statistiques 40.1 (2004): 73-88. <http://eudml.org/doc/77800>.

@article{DaPrato2004,
author = {Da Prato, Giuseppe, Debussche, Arnaud, Tubaro, Luciano},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {stochastic Cahn-Hilliard equation; Kolmogorov operator},
language = {eng},
number = {1},
pages = {73-88},
publisher = {Elsevier},
title = {Irregular semi-convex gradient systems perturbed by noise and application to the stochastic Cahn–Hilliard equation},
url = {http://eudml.org/doc/77800},
volume = {40},
year = {2004},
}

TY - JOUR
AU - Da Prato, Giuseppe
AU - Debussche, Arnaud
AU - Tubaro, Luciano
TI - Irregular semi-convex gradient systems perturbed by noise and application to the stochastic Cahn–Hilliard equation
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2004
PB - Elsevier
VL - 40
IS - 1
SP - 73
EP - 88
LA - eng
KW - stochastic Cahn-Hilliard equation; Kolmogorov operator
UR - http://eudml.org/doc/77800
ER -

References

top
  1. [1] S. Albeverio, R. Høegh-Krohn, Dirichlet forms and diffusion processes on rigged Hilbert spaces, Z. Wahrsch. Geb.40 (1977) 1-57. Zbl0342.60057MR455133
  2. [2] S. Albeverio, V. Kondratiev, M. Röckner, Dirichlet operators via stochastic analysis, J. Funct. Anal.128 (1) (1995) 102-138. Zbl0820.60042MR1317712
  3. [3] D. Bakry, L'hypercontractivité et son utilisation en théorie des semi-groupes, Lectures on Probability Theory, Lecture Notes in Math., vol. 1581, Springer, 1994. Zbl0856.47026MR1307413
  4. [4] D. Blömker, S. Majer-Paape, T. Wanner, Spinodal decomposition for the Cahn–Hilliard–Cook equation, Comm. Math. Phys.223 (2001) 553-582. Zbl0993.60061
  5. [5] A. Chojnowska-Michalik, B. Goldys, On regularity properties of nonsymmetric Ornstein–Uhlenbeck semigroup in Lp spaces, Stoch. Stoch. Reports59 (1996) 183-209. Zbl0876.60039
  6. [6] C. Cardon-Weber, Cahn–Hilliard stochastic equations: strict positivity of the density, Stochastic and Stochastic Reports72 (2002) 191-277. Zbl1002.60050
  7. [7] G. Da Prato, A. Debussche, Stochastic Cahn–Hilliard equation, Nonlinear Anal.26 (2) (1996) 241-263. Zbl0838.60056
  8. [8] G. Da Prato, A. Debussche, B. Goldys, Some properties of invariant measures of nonsymmetric dissipative stochastic systems, Probab. Theory Related Fields123 (3) (2002) 355-380. Zbl1087.60049MR1918538
  9. [9] G. Da Prato, L. Tubaro, Some results about dissipativity of Kolmogorov operators, Czechoslovak Math. J.51 (4) (2001) 685-699. Zbl0996.47028MR1864036
  10. [10] G. Da Prato, L. Tubaro, On a class of gradient systems with irregular potentials, in: Infinite Dimensional Analysis, Quantum Probability and Related Topics, vol. 4, 2001, pp. 183-194. Zbl1055.60064MR1841617
  11. [11] G. Da Prato, J. Zabczyk, Ergodicity for Infinite Dimensional Systems, London Mathematical Society Lecture Notes, vol. 229, Cambridge University Press, 1996. Zbl0849.60052MR1417491
  12. [12] G. Da Prato, J. Zabczyk, Second Order Partial Differential Equations in Hilbert Spaces, London Mathematical Society Lecture Notes, vol. 293, Cambridge University Press, 2002. Zbl1012.35001MR1985790
  13. [13] A. Eberle, Uniqueness and Non-Uniqueness of Singular Diffusion Operators, Lecture Notes in Mathematics, vol. 1718, Springer-Verlag, 1999. Zbl0957.60002MR1734956
  14. [14] V. Liskevich, M. Röckner, Strong uniqueness for a class of infinite dimensional Dirichlet operators and application to stochastic quantization, Ann. Scuola Norm. Sup. Pisa Cl. Sci.27 (1999) 69-91. Zbl0953.60056MR1658889
  15. [15] G. Lumer, R.S. Phillips, Dissipative operators in a Banach space, Pacific J. Math.11 (1961) 679-698. Zbl0101.09503MR132403

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.