A PDE approach to some asymptotic problems concerning random differential equations with small noise intensities
Annales de l'I.H.P. Analyse non linéaire (1985)
- Volume: 2, Issue: 1, page 1-20
- ISSN: 0294-1449
Access Full Article
topHow to cite
topEvans, L. C., and Ishii, H.. "A PDE approach to some asymptotic problems concerning random differential equations with small noise intensities." Annales de l'I.H.P. Analyse non linéaire 2.1 (1985): 1-20. <http://eudml.org/doc/78086>.
@article{Evans1985,
author = {Evans, L. C., Ishii, H.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {viscosity solution methods for Hamilton-Jacobi PDE; WKB-type representations},
language = {eng},
number = {1},
pages = {1-20},
publisher = {Gauthier-Villars},
title = {A PDE approach to some asymptotic problems concerning random differential equations with small noise intensities},
url = {http://eudml.org/doc/78086},
volume = {2},
year = {1985},
}
TY - JOUR
AU - Evans, L. C.
AU - Ishii, H.
TI - A PDE approach to some asymptotic problems concerning random differential equations with small noise intensities
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1985
PB - Gauthier-Villars
VL - 2
IS - 1
SP - 1
EP - 20
LA - eng
KW - viscosity solution methods for Hamilton-Jacobi PDE; WKB-type representations
UR - http://eudml.org/doc/78086
ER -
References
top- [1] D.G. Aronson, The fundamental solution of a linear parabolic equation containing a small parameter, Ill. J. Math., t. 3, 1959, p. 580-619. Zbl0090.07601MR107758
- [2] G. Barles, Thèse de 3e cycle, Univ. Paris IX, Dauphine, Paris, 1983.
- [3] E.N. Barron, L.C. Evans, and R. Jensen, Viscosity solutions of Isaacs' equations and differential games with Lipschitz controls, to appear in J. Diff. Eq. Zbl0548.90104
- [4] I. Capuzzo Dolcetta and L.C. Evans, Optimal switching for ordinary differential equations, to appear in SIAM J. Control and Op., t. 22, 1984, p. 143- 161. Zbl0641.49017MR728678
- [5] M.G. Grandall, L.C. Evans, and P.L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. AMS., t. 282, 1984, p. 487-502. Zbl0543.35011MR732102
- [6] M.G. Crandall and P.L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. AMS, t. 277, 1983, p. 1-42. Zbl0599.35024MR690039
- [7] L.C. Evans, and H. Ishii, Differential games and nonlinear first-order PDE on bounded domains, to appear in Manuscripta Math. Zbl0559.35013MR767202
- [8] L.C. Evans and P.E. Souganidis, Differential games and representation formulas for solutions of Hamilton-Jacobi-Isaacs equations, to appear in Indiana U. Math. J. Zbl1169.91317MR756158
- [9] W.H. Fleming, Inclusion probability and optimal stochastic control, IRIA Seminars Review, 1977. MR525182
- [10] W.H. Fleming, Exit probabilities and optimal stochastic control, Appl. Math. Op., t. 4, 1978, p. 329-346. Zbl0398.93068MR512217
- [11] W.H. Fleming, Logarithmic transformations and stochastic control, in Advances in Filtering and Stochastic Control (ed. by Fleming and Gorostiza), Springer, New York, 1983. Zbl0502.93076MR794510
- [12] A. Friedman, Stochastic Differential Equations and Applications, Vol. II, Academic Press, New York, 1976. Zbl0323.60057
- [13] C.J. Holland, A minimum principle for the principal eigenvalue of second order linear elliptic equations with natural boundary conditions, Comm. Pure Appl. Math., t. 31, 1978, p. 509-519. Zbl0388.35053MR466940
- [14] P.L. Lions, Generalized Solutions of Hamilton-Jacobi Equations, Pitman, Boston, 1982. Zbl0497.35001MR667669
- [15] P.L. Lions, Existence results for first-order Hamilton-Jacobi equations, to appear. Zbl0552.70012MR740198
- [16] P.L. Lions, Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations I-III, to appear in Comm. PDE. Zbl0716.49023
- [17] P.E. Souganidis, Thesis, U. of Wisconsin, 1983.
- [18] S.R.S. Varadhan, On the behavior of the fundamental solution of the heat equation with variable coefficients, Comm. Pure Appl. Math., t. 20, 1967, p. 431-455. Zbl0155.16503MR208191
- [19] A.D. Ventcel and M.I. Freidlin, On small random perturbations of dynamical systems, Russian Math. Surveys, t. 25, 1970, p. 1-56. Zbl0297.34053MR267221
Citations in EuDML Documents
top- L. C. Evans, P. E. Souganidis, G. Fournier, M. Willem, A PDE approach to certain large deviation problems for systems of parabolic equations
- A. Piatnitski, A. Rybalko, V. Rybalko, Ground states of singularly perturbed convection-diffusion equation with oscillating coefficients
- G. Barles, L. Bronsard, P. E. Souganidis, Front propagation for reaction-diffusion equations of bistable type
- Magdalena Kobylanski, Large deviations principle by viscosity solutions: the case of diffusions with oblique Lipschitz reflections
- Brett Kotschwar, Lei Ni, Local gradient estimates of -harmonic functions, -flow, and an entropy formula
- Martino Bardi, An asymptotic formula for the Green's function of an elliptic operator
- Wendell H. Fleming, Panagiotis E. Souganidis, PDE-viscosity solution approach to some problems of large deviations
- Italo Capuzzo Dolcetta, Soluzioni di viscosità
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.