Radially symmetric cavitation for hyperelastic materials
Annales de l'I.H.P. Analyse non linéaire (1985)
- Volume: 2, Issue: 1, page 33-66
- ISSN: 0294-1449
Access Full Article
topHow to cite
topStuart, C. A.. "Radially symmetric cavitation for hyperelastic materials." Annales de l'I.H.P. Analyse non linéaire 2.1 (1985): 33-66. <http://eudml.org/doc/78088>.
@article{Stuart1985,
author = {Stuart, C. A.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {radially symmetric cavitation; hyperelastic material; nonlinear boundary value problem; singular second order differential equation; class of stored-energy densities; existence; class of singular radial solutions; equilibrium equations; spherical hole in a ball; isotropic material; shooting method},
language = {eng},
number = {1},
pages = {33-66},
publisher = {Gauthier-Villars},
title = {Radially symmetric cavitation for hyperelastic materials},
url = {http://eudml.org/doc/78088},
volume = {2},
year = {1985},
}
TY - JOUR
AU - Stuart, C. A.
TI - Radially symmetric cavitation for hyperelastic materials
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1985
PB - Gauthier-Villars
VL - 2
IS - 1
SP - 33
EP - 66
LA - eng
KW - radially symmetric cavitation; hyperelastic material; nonlinear boundary value problem; singular second order differential equation; class of stored-energy densities; existence; class of singular radial solutions; equilibrium equations; spherical hole in a ball; isotropic material; shooting method
UR - http://eudml.org/doc/78088
ER -
References
top- [1] J.M. Ball, Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Phil. Trans. R. Soc. Lond., A306, 1982, p. 557-611. Zbl0513.73020MR703623
- [2] M.E. Gurtin, Topics in Finite Elasticity, S. I. A. M. Region Conference Series, n° 35, Philadelphia, 1981. Zbl0486.73030MR599913
Citations in EuDML Documents
top- R. D. James, S. J. Spector, Remarks on -quasiconvexity, interpenetration of matter, and function spaces for elasticity
- J. Sivaloganathan, Singular minimisers in the calculus of variations : a degenerate form of cavitation
- Jeyabal Sivaloganathan, Scott J. Spector, Necessary conditions for a minimum at a radial cavitating singularity in nonlinear elasticity
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.