On the singular support of the distributional determinant
Annales de l'I.H.P. Analyse non linéaire (1993)
- Volume: 10, Issue: 6, page 657-696
- ISSN: 0294-1449
Access Full Article
topHow to cite
topMüller, Stefan. "On the singular support of the distributional determinant." Annales de l'I.H.P. Analyse non linéaire 10.6 (1993): 657-696. <http://eudml.org/doc/78321>.
@article{Müller1993,
author = {Müller, Stefan},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {singular support; compensated compactness; Sobolev space; distributional determinant; set of prescribed Hausdorff-dimension},
language = {eng},
number = {6},
pages = {657-696},
publisher = {Gauthier-Villars},
title = {On the singular support of the distributional determinant},
url = {http://eudml.org/doc/78321},
volume = {10},
year = {1993},
}
TY - JOUR
AU - Müller, Stefan
TI - On the singular support of the distributional determinant
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1993
PB - Gauthier-Villars
VL - 10
IS - 6
SP - 657
EP - 696
LA - eng
KW - singular support; compensated compactness; Sobolev space; distributional determinant; set of prescribed Hausdorff-dimension
UR - http://eudml.org/doc/78321
ER -
References
top- [Ba 77] J.M. Ball. Convexity Conditions and Existence Theorems in Nonlinear Elasticity, Arch. Rat. Mech. Anal., Vol. 63. 1977, pp. 337-403. Zbl0368.73040
- [CLMS 89] R. Coifman, P.-L. Lions, Y. Meyer and S. Semmls, Compacité par compensation et espaces dc Hardy. C. R. Acad. Sci. Paris, T. 309, Series I, 1989, pp. 945-949. Zbl0684.46044
- [Da 89] B. Dacorogna, Direct Methods in the Calculus of Variations, Springer, Berlin, New York, 1989. Zbl0703.49001
- [DM 90] B. Dacorogna and J. Moser, On a Partial Differential Equation Involving the Jacobian Determant, Ann. I.H.P., Analvse non linéaire, Vol. 7, 1990, pp. 1-26. Zbl0707.35041
- [DA 89] R. De Arcanġelis, Some Remarks on the Identity Between a Variational Functional and its Relaxed Functional, Ann. Univ. Ferrera, Sez. VII, Sc. Math., Vol. 35, 1989, pp. 135-145. Zbl0715.49002
- [Fa 85] K.J. Falconer, The Geometry of Fractal Sets, Cambridge University Press, Cambridge, 1985. Zbl0587.28004
- [Gi 84] E. Gusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Basel, 1984. Zbl0545.49018
- [MM 92] J. Maly and O. Martio, Lusin's Condition (N) and Mappings of the Class W1,n, Preprint.
- [Mo 66] C.B. Morrly, Multiple Integrals in the Calculus of Variations, Springer, Berlin, New York, 1966. Zbl0142.38701
- [Mu 90a] S. Müller, Det = det. A Remark on the Distributional Determinant, C. R. Acad. Sci. Paris, T. 311, Series I, 1990, pp. 13-17. Zbl0717.46033
- [Mu 90b] S. Müller, A Counterexample to Formal Integration by Parts, C. R. Acad. Sci. Paris, T. 312, Series I, 1990, pp. 45-49. Zbl0723.46028
- [MTY 92] S. Müller, Q. Tang and B.S. Yan, On a New Class of Elastic Deformations not Allowing for Cavitation. Ann. I.H.P., Analvse non linéaire, to appear. Zbl0863.49002
- [Po 87] S.P. Ponomarev, Property N of Homeomorphisms of the Class W1.p, Sib. Math. J., Vol. 28, (1), 1987, pp. 291-298. Zbl0625.30024
- [Ro 70] C.A. Rogers, Hausdorff Measure, Cambridge University Press, Cambridge1970. Zbl0204.37601
Citations in EuDML Documents
top- S. Müller, Tang Qi, B. S. Yan, On a new class of elastic deformations not allowing for cavitation
- Luigi D'Onofrio, Flavia Giannetti, Luigi Greco, On weak Hessian determinants
- Luigi Ambrosio, Francesco Ghiraldin, Compactness of Special Functions of Bounded Higher Variation
- Guido De Philippis, Weak notions of jacobian determinant and relaxation
- Guido De Philippis, Weak notions of Jacobian determinant and relaxation
- Irene Fonseca, Nicola Fusco, Paolo Marcellini, Topological degree, Jacobian determinants and relaxation
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.