Isoperimetric inequalities for quermassintegrals

Neil S. Trudinger

Annales de l'I.H.P. Analyse non linéaire (1994)

  • Volume: 11, Issue: 4, page 411-425
  • ISSN: 0294-1449

How to cite

top

Trudinger, Neil S.. "Isoperimetric inequalities for quermassintegrals." Annales de l'I.H.P. Analyse non linéaire 11.4 (1994): 411-425. <http://eudml.org/doc/78338>.

@article{Trudinger1994,
author = {Trudinger, Neil S.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {volume; Monge-Ampère equations; non-convex bounded domains; isoperimetric inequalities; quermassintegrals},
language = {eng},
number = {4},
pages = {411-425},
publisher = {Gauthier-Villars},
title = {Isoperimetric inequalities for quermassintegrals},
url = {http://eudml.org/doc/78338},
volume = {11},
year = {1994},
}

TY - JOUR
AU - Trudinger, Neil S.
TI - Isoperimetric inequalities for quermassintegrals
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1994
PB - Gauthier-Villars
VL - 11
IS - 4
SP - 411
EP - 425
LA - eng
KW - volume; Monge-Ampère equations; non-convex bounded domains; isoperimetric inequalities; quermassintegrals
UR - http://eudml.org/doc/78338
ER -

References

top
  1. [1] Yu D. Burago and V.A. Zalgaller, Geometric Inequalities, Springer-Verlag, Berlin, 1988. Zbl0633.53002MR936419
  2. [2] H. Busemann, Convex Surfaces, Wiley Interscience, New York, 1958. Zbl0196.55101MR105155
  3. [3] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Second edition, Springer-Verlag, Berlin, 1983. Zbl0562.35001MR737190
  4. [4] N.M. Ivochkina, The Dirichlet problem for the equations of curvature of order, m. St Petersburg Math. J., 2, 1991, pp. 631-654. Zbl0732.35031MR1073214
  5. [5] N.J. Korevaar, Sphere theorems via Aleksandrov for constant Weingarten curvature, J. Diff. Geom., 27, 1988, pp. 221-223. Zbl0638.53052
  6. [6] P.L. Lions, N.S. Trudinger and J.J.E. Urbas, The Neumann problem for equations of Monge-Ampère type, Comm. Pure Appl. Math., 39, 1986, pp. 539-563. Zbl0604.35027MR840340
  7. [7] R.C. Reilly, On the Hessian of a function and the curvatures of its graph, Michigan Math. J.20, 1973, pp. 373-383. Zbl0267.53003MR334045
  8. [8] L. Santalo, Integral Geometry and Geometric Probability, Addison-Wesley, Cambridge, Mass., 1977. Zbl0342.53049MR433364
  9. [9] N.S. Trudinger, On degenerate fully nonlinear equations in balls, Bull. Aust. Math. Soc., 35, 1987, pp. 299-307. Zbl0611.35028MR878440
  10. [10] N.S. Trudinger, A priori bounds for graphs with prescribed curvature, In Analysis, etc., Academic Press, 1990, pp. 667-676. Zbl0714.53008MR1039367
  11. [11] N.S. Trudinger, A priori bounds and necessary conditions for solvability of prescribed curvature equations, Manuscripta Math., 67, 1990, pp. 99-112. Zbl0703.35070MR1037998
  12. [12] N.S. Trudinger, The Dirichlet problem for the prescribed curvature equations, Arch. Rat. Mech. Anal., 111, 1990, pp. 153-170. Zbl0721.35018MR1057653
  13. [13] N.S. Trudinger, On the Dirichlet problem for Hessian equations, Aust. Nat. Univ. Centre for Math. and its Appl., Research Report M25, 1994. Zbl0887.35061MR1368245
  14. [14] N.S. Trudinger, On new isoperimetric inequalities and symmetrization, in preparation. 
  15. [15] N.S. Trudinger and J.J.E. Urbas, The Dirichlet problem for the equation of prescribed Gauss curvature, Bull. Aust. Math. Soc., 28, 1983, pp. 217-231. Zbl0524.35047MR729009

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.