Prékopa–Leindler type inequalities on Riemannian manifolds, Jacobi fields, and optimal transport
Dario Cordero-Erausquin[1]; Robert J. McCann[2]; Michael Schmuckenschläger[3]
- [1] Laboratoire d’Analyse et de Mathématiques Appliquées, Université de Marne la Vallée, 77454 Marne la Vallée Cedex 2, France.
- [2] Department of Mathematics, University of Toronto, Toronto Ontario Canada M5S 3G3.
- [3] Institut für Analysis und Numerik, Universität Linz, A-4040 Linz, Österreich.
Annales de la faculté des sciences de Toulouse Mathématiques (2006)
- Volume: 15, Issue: 4, page 613-635
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topCordero-Erausquin, Dario, McCann, Robert J., and Schmuckenschläger, Michael. "Prékopa–Leindler type inequalities on Riemannian manifolds, Jacobi fields, and optimal transport." Annales de la faculté des sciences de Toulouse Mathématiques 15.4 (2006): 613-635. <http://eudml.org/doc/10016>.
@article{Cordero2006,
abstract = {We investigate Prékopa-Leindler type inequalities on a Riemannian manifold $M$ equipped with a measure with density $e^\{-V\}$ where the potential $V$ and the Ricci curvature satisfy $\operatorname\{Hess\}_x V + \operatorname\{Ric\}_x \ge \lambda \, I$ for all $x\in M$, with some $\lambda \in \mathbb\{R\}$. As in our earlier work [14], the argument uses optimal mass transport on $M$, but here, with a special emphasis on its connection with Jacobi fields. A key role will be played by the differential equation satisfied by the determinant of a matrix of Jacobi fields. We also present applications of the method to logarithmic Sobolev inequalities (the Bakry-Emery criterion will be recovered) and to transport inequalities. A study of the displacement convexity of the entropy functional completes the exposition.},
affiliation = {Laboratoire d’Analyse et de Mathématiques Appliquées, Université de Marne la Vallée, 77454 Marne la Vallée Cedex 2, France.; Department of Mathematics, University of Toronto, Toronto Ontario Canada M5S 3G3.; Institut für Analysis und Numerik, Universität Linz, A-4040 Linz, Österreich.},
author = {Cordero-Erausquin, Dario, McCann, Robert J., Schmuckenschläger, Michael},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
language = {eng},
number = {4},
pages = {613-635},
publisher = {Université Paul Sabatier, Toulouse},
title = {Prékopa–Leindler type inequalities on Riemannian manifolds, Jacobi fields, and optimal transport},
url = {http://eudml.org/doc/10016},
volume = {15},
year = {2006},
}
TY - JOUR
AU - Cordero-Erausquin, Dario
AU - McCann, Robert J.
AU - Schmuckenschläger, Michael
TI - Prékopa–Leindler type inequalities on Riemannian manifolds, Jacobi fields, and optimal transport
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2006
PB - Université Paul Sabatier, Toulouse
VL - 15
IS - 4
SP - 613
EP - 635
AB - We investigate Prékopa-Leindler type inequalities on a Riemannian manifold $M$ equipped with a measure with density $e^{-V}$ where the potential $V$ and the Ricci curvature satisfy $\operatorname{Hess}_x V + \operatorname{Ric}_x \ge \lambda \, I$ for all $x\in M$, with some $\lambda \in \mathbb{R}$. As in our earlier work [14], the argument uses optimal mass transport on $M$, but here, with a special emphasis on its connection with Jacobi fields. A key role will be played by the differential equation satisfied by the determinant of a matrix of Jacobi fields. We also present applications of the method to logarithmic Sobolev inequalities (the Bakry-Emery criterion will be recovered) and to transport inequalities. A study of the displacement convexity of the entropy functional completes the exposition.
LA - eng
UR - http://eudml.org/doc/10016
ER -
References
top- S. Alesker, S. Dar, V. Milman, A remarkable measure preserving diffeomorphism between two convex bodies in ,, Geom. Dedicata 74 (1999), 201-212 Zbl0927.52007MR1674116
- L.A. Ambrosio, N. Gigli, G. Savaré, Gradient flows with metric and differentiable structures,and applications to the Wasserstein space Zbl1162.35349
- D. Bakry, M. Emery, Séminaire de Probabilités, Diffusions hypercontractives 1123 (1985), 177-206, Springer Zbl0561.60080MR889476
- K.M. Ball, An elementary introduction to modern convex geometry, Flavors of geometry, Math. Sci. Res. Inst. Publ. (1997), 1-58 Zbl0901.52002MR1491097
- F. Barthe, On a reverse form of the Brascamp-Lieb inequality, Invent. Math. 134 (1998), 335-361 Zbl0901.26010MR1650312
- S. Bobkov, M. Ledoux, From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities, Geom. Funct. Anal. 10 (2000), 1028-1052 Zbl0969.26019MR1800062
- S. Bobkov, I. Gentil, M. Ledoux, Hypercontractivity of Hamilton-Jacobi equations, J. Math. Pures Appl. 80 (2001), 669-696 Zbl1038.35020MR1846020
- C. Borell, Convex set functions in -space, Period. Math. Hungar. 6 (1975), 111-136 Zbl0274.28009MR404559
- H.J. Brascamp, E.H. Lieb, On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation,, J. Funct. Anal. 22 (1976), 366-389 Zbl0334.26009MR450480
- Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math. 44 (1991), 375-417 Zbl0738.46011MR1100809
- J.A. Carrillo, R.J. McCann, C. Villani, Contractions in the -Wasserstein length space and thermalization of granular media Zbl1082.76105MR2209130
- I. Chavel, Riemannian Geometry—a Modern Introduction, Cambridge Tracts in Math 108 (1993) Zbl0810.53001MR1271141
- D. Cordero-Erausquin, Some applications of mass transport to Gaussian type inequalities, Arch. Rational Mech. Anal. 161 (2002) Zbl0998.60080MR1894593
- D. Cordero-Erausquin, R.J. McCann, M. Schmuckenschläger, A Riemannian interpolation inequality à la Borell, Brascamp and Lieb, Invent. Math. 146 (2001), 219-257 Zbl1026.58018MR1865396
- D. Cordero-Erausquin, B. Nazaret, C. Villani, A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities, Adv. Math. 182 (2004), 307-332 Zbl1048.26010MR2032031
- S. Das Gupta, Brunn-Minkowski inequality and its aftermath, J. Multivariate Anal. (1980) Zbl0467.26008MR588074
- S. Gallot, D. Hulin, J. Lafontaine, Riemannian Geometry, (1990), Springer-Verlag Zbl0716.53001MR1083149
- R.J. Gardner, The Brunn-Minkowski inequality, Bull. Amer. Math. Soc. 39 (2002), 355-405 Zbl1019.26008MR1898210
- M. Gromov, V. Milman, A topological application of the isoperimetric inequality, Amer. J. Math. 105 (1983), 843-854 Zbl0522.53039MR708367
- H. Knothe, Contributions to the theory of convex bodies, Michigan Math. J. 4 (1957), 39-52 Zbl0077.35803MR83759
- M. Ledoux, Concentration of measure and logarithmic Sobolev inequalities, Séminaire de Probabilités 33 (1999), 120-216 Zbl0957.60016MR1767995
- M. Ledoux, Measure concentration, transportation cost, and functional inequalities, Summer School on Singular Phenomena and Scaling in Mathematical Models (2003), Bonn
- M Ledoux, The concentration of measure phenomenon, (2001), American Mathematical Society, Providence, RI Zbl0995.60002MR1849347
- L. Leindler, On a certain converse of Hölder’s inequality, Acta Sci. Math. 33 (1972), 217-233 Zbl0245.26011MR2199372
- J. Lott, C. Villani, Ricci curvature for metric-measure spaces via optimal transport Zbl1178.53038
- F. Maggi, C. Villani, Balls have the worst best Sobolev inequality Zbl1086.46021
- B. Maurey, Some deviation inequalities, Geom. Funct. Anal. 1 (1991), 188-197 Zbl0756.60018MR1097258
- B. Maurey, Inégalité de Brunn-Minkowski-Lusternik, et autres inégalités géométriques et fonctionnelles, Séminaire Bourbaki (2003) Zbl1101.52002MR2167203
- R.J. McCann, A Convexity Principle for Interacting Gases and Equilibrium Crystals, (1994)
- R.J. McCann, Existence and uniqueness of monotone measure-preserving maps, Duke. Math. J. 80 (1995), 309-323 Zbl0873.28009MR1369395
- R.J. McCann, A convexity principle for interacting gases, Adv. Math. 128 (1997), 153-179 Zbl0901.49012MR1451422
- R.J. McCann, Polar factorization of maps on Riemannian manifolds, Geom. Funct. Anal. 11 (2001), 589-608 Zbl1011.58009MR1844080
- V.D. Milman, G. Schechtman, Asymptotic theory of finite-dimensional normed spaces, (1986), Springer-Verlag, Berlin Zbl0606.46013MR856576
- F. Otto, The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations 26 (2001), 101-174 Zbl0984.35089MR1842429
- F. Otto, C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal. 173 (2000), 361-400 Zbl0985.58019MR1760620
- A. Prékopa, Logarithmic concave measures with application to stochastic programming, Acta Sci. Math. 32 (1971), 301-315 Zbl0235.90044MR315079
- A. Prékopa, On logarithmic concave measures and functions, Acta Sci. Math. (Szeged) 34 (1973), 335-343 Zbl0264.90038MR404557
- M. Schmuckenschläger, A concentration of measure phenomenon on uniformly convex bodies, GAFA Seminar (1992-1994) (1995), 275-287, Birkaäuser Zbl0828.52004MR1353466
- R. Schneider, Convex Bodies: the Brunn-Minkowski Theory, (1993), Cambridge University Press, Cambridge Zbl0798.52001MR1216521
- K.-T. Sturm, Convex functionals of probability measures and nonlinear diffusions, J. Math. Pures Appl. 84 (2005) Zbl1259.49074MR2118836
- K.-T. Sturm, M.-K. von Renesse, Transport inequalities, gradient estimates, entropy and Ricci curvature, Comm. Pure Appl. Math. 58 (2005), 923-940 Zbl1078.53028MR2142879
- N.S. Trudinger, Isoperimetric inequalities for quermassintegrals, Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994), 411-425 Zbl0859.52001MR1287239
- C. Villani, Graduate Studies in Math., Topics in Optimal Transportation 58 (2003), American Mathematical Society, Providence, RI Zbl1106.90001MR1964483
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.