Solitary waves of generalized Kadomtsev-Petviashvili equations
Anne de Bouard; Jean-Claude Saut
Annales de l'I.H.P. Analyse non linéaire (1997)
- Volume: 14, Issue: 2, page 211-236
- ISSN: 0294-1449
Access Full Article
topHow to cite
topde Bouard, Anne, and Saut, Jean-Claude. "Solitary waves of generalized Kadomtsev-Petviashvili equations." Annales de l'I.H.P. Analyse non linéaire 14.2 (1997): 211-236. <http://eudml.org/doc/78409>.
@article{deBouard1997,
author = {de Bouard, Anne, Saut, Jean-Claude},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {concentration compactness principle; Pohozaev identity; existence; nonexistence; localized solitary waves; generalized Kadomtsev-Petviashvili equations; regularity; fifth-order KdV equation},
language = {eng},
number = {2},
pages = {211-236},
publisher = {Gauthier-Villars},
title = {Solitary waves of generalized Kadomtsev-Petviashvili equations},
url = {http://eudml.org/doc/78409},
volume = {14},
year = {1997},
}
TY - JOUR
AU - de Bouard, Anne
AU - Saut, Jean-Claude
TI - Solitary waves of generalized Kadomtsev-Petviashvili equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1997
PB - Gauthier-Villars
VL - 14
IS - 2
SP - 211
EP - 236
LA - eng
KW - concentration compactness principle; Pohozaev identity; existence; nonexistence; localized solitary waves; generalized Kadomtsev-Petviashvili equations; regularity; fifth-order KdV equation
UR - http://eudml.org/doc/78409
ER -
References
top- [1] M.J. Ablowitz and P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, Cambridge, 1991. Zbl0762.35001MR1149378
- [2] M.J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981. Zbl0472.35002MR642018
- [3] L.A. Abramyan and Y.A. Stepanyants, The structure of two-dimensional solitons in media with anomalously small dispersion, Sov. Phys. JETP, Vol. 61, 5, 1985, pp. 963-966.
- [4] O.V. Besov, V.P. Il'in, S.M. Nikolskii, Integral Representations of Functions and Imbeddings Theorems, Vol. I, J. Wiley, 1978.
- [5] J. Bourgain, On the Cauchy problem for the Kadomtsev-Petviashvili equations, Geometric and Functional Anal., Vol. 3, 4, 1993, pp. 315-341. Zbl0787.35086MR1223434
- [6] A. De Bouard, J.C. Saut, Sur les ondes solitaires des équations de Kadomtsev-Petviashvili, C. R. Acad. Sci. Paris, Vol. 320, série I , 1995, pp. 315-320. Zbl0833.35028MR1320377
- [7] A. Faminskii, The Cauchy problem for the Kadomtsev-Petviashvili equation, Russian Math. Surveys, Vol. 5, 1990, pp. 203-204 and Siberian J. Math., Vol. 33, 1992, pp. 133-143. Zbl0731.35089MR1050944
- [8] A.S. Fokas and L.Y. Sung, On the solvability of the N-wave, Davey-Stewartson and Kadomtsev-Petviashvili equations, Inverse Problems, 8, 1992, 673-708. Zbl0768.35069MR1185594
- [9] P. Isaza, J. Mejia and V. Stallhohm, Local solution for the Kadomtsev-Petviashvili equation in R2, J. Math. Anal. Appl., Vol. 196, 1995, pp. 566-587. Zbl0844.35107MR1362707
- [10] B.B. Kadomtsev and V.I. Petviashvili, On the stability of solitary waves in weakly dispersing media, Soviet Physics Doklady, Vol. 15, 6, 1970, pp. 539-541. Zbl0217.25004
- [11] V.I. Karpman and V.Yu. Belashov, Dynamics of two-dimensional solitons in weakly dispersive media, Phys. Lett., A, Vol. 154, 1991, pp. 131-139.
- [12] V.I. Karpman and V.Yu. Belashov, Evolution of three-dimensional nonlinear pulses in weakly dispersive media, Phys. Lett. A, Vol. 154, 1991, pp. 140-144.
- [13] E.A. Kuznetsov, S.L. Musher, Effect of collapse of sound waves on the structure of collisionless shock waves in a magnetized plasma, Soviet Phys. JETP , Vol. 64, 5, 1986, pp. 947-955.
- [14] P.L. Lions, The concentration-compactness principle in the calculus of variations, The locally compact case, I and II, Ann. I.H.P. Analyse Non Linéaire, Vol. I, 1984, pp. 104-145 and pp. 223-283. Zbl0704.49004MR778974
- [15] P.I. Lizorkin, Multipliers of Fourier integrals, Proc. Steklov Inst. Math., Vol. 89, 1967, pp. 269-290. Zbl0167.12404MR217519
- [16] J. Pouget, Stability of nonlinear structures in a lattice model for phase transformations in alloys, Phys. Rev. B, Vol. 46, 1992, pp. 10554-10562.
- [17] J.C. Saut, Remarks on the generalized Kadomtsev-Petviashvili equations, Indiana Math. J., Vol. 42, 3, 1993, pp. 1011-1026. Zbl0814.35119MR1254130
- [18] J.C. Saut, Recent results on the generalized Kadomtsev-Petviashvili equations, Acta Appl. Math.,, Vol. 39, 1995, pp. 477-487. Zbl0839.35121MR1329578
- [19] S. Ukai, Local solutions of the Kadomtsev-Petviashvili equation, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., Vol. 36, 1989, pp. 193-209. Zbl0703.35155MR1014996
- [20] X.P. Wang, M.J. Ablowitz and H. Segur, Wave collapse and instability of solitary waves of a generalized Kadomtsev-Petviashvili equation, Physica D, Vol. 78, 1994, pp. 97-113. Zbl0824.35116MR1302410
- [21] X. Zhou, Inverse scattering transform for the time dependent Schrödinger equation with applications to the KP I equation, Comm. Math. Phys., Vol. 128, 1990, pp. 551-564. Zbl0702.35241MR1045884
- [22] M. Tom, On a generalized Kadomtsev-Petviashvili equation, in Mathematical Problems in the Theory of Water Waves, AMS Contemporary Mathematics, Vol. 200, 1996, pp. 193-210. Zbl0861.35103MR1410508
- [23] A. De Bouard, J.C. Saut, Symmetries and decay of the generalized KP Solitary waves, SIAM J. Math. Analysis, 1997. Zbl0889.35090
- [24] A. De Bouard, J.C. Saut, Remarks on the Stability of generalized KP Solitary waves, in Mathematical Problems in the Theory of Water Waves, AMS Contemporary Mathematics, Vol. 200, 1996, pp. 75-84. Zbl0863.35095MR1410501
Citations in EuDML Documents
top- V. Torri, Mathematical analysis of the stabilization of lamellar phases by a shear stress
- Anna Kazeykina, Solitons and large time behavior of solutions of a multidimensional integrable equation
- V. Torri, Mathematical analysis of the stabilization of lamellar phases by a shear stress
- Fabrice Béthuel, Philippe Gravejat, Jean-Claude Saut, Ondes progressives pour l’équation de Gross-Pitaevskii
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.