Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results
Annales de l'I.H.P. Analyse non linéaire (1998)
- Volume: 15, Issue: 4, page 493-516
- ISSN: 0294-1449
Access Full Article
topHow to cite
topDamascelli, Lucio. "Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results." Annales de l'I.H.P. Analyse non linéaire 15.4 (1998): 493-516. <http://eudml.org/doc/78445>.
@article{Damascelli1998,
author = {Damascelli, Lucio},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {-Laplacian; differential inequalities; moving planes; sliding method},
language = {eng},
number = {4},
pages = {493-516},
publisher = {Gauthier-Villars},
title = {Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results},
url = {http://eudml.org/doc/78445},
volume = {15},
year = {1998},
}
TY - JOUR
AU - Damascelli, Lucio
TI - Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1998
PB - Gauthier-Villars
VL - 15
IS - 4
SP - 493
EP - 516
LA - eng
KW - -Laplacian; differential inequalities; moving planes; sliding method
UR - http://eudml.org/doc/78445
ER -
References
top- [1] M. Badiale and E. Nabana, A note on radiality of solutions of p-laplacian equation, Applicable Anal., Vol. 52, 1994, pp. 35-43. Zbl0841.35008MR1380325
- [2] H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method, Bol. Soc. Brasileira de Mat. Nova Ser., Vol. 22, 1991, pp. 1-37. Zbl0784.35025MR1159383
- [3] L. Damascelli, Some remarks on the method of moving planes, to appear. Zbl1040.35032MR1745551
- [4] E Di Benedetto, C1+a local regularity of weak solutions of degenerate elliptic equations, Nonlin. Anal. T.M.A., Vol. 7(8), 1983, pp. 827-850. Zbl0539.35027MR709038
- [5] B. Gidas, W.M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., Vol. 68, 1979, pp. 209-243. Zbl0425.35020MR544879
- [6] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, 2nd edition, Springer, 1983. Zbl0562.35001MR737190
- [7] M. Grossi, S. Kesavan, F. Pacella and M. Ramaswami, Symmetry of positive solutions of some nonlinear equations, to appear. Zbl0927.35039
- [8] M. Guedda and L. Veron, Quasilinear elliptic equations involving critical Sobolev exponents, Nonlin. Anal. T.M.A., Vol. 13(8), 1989, pp. 879-902. Zbl0714.35032MR1009077
- [9] S. Kesavan and F. Pacella, Symmetry of positive solutions of a quasilinear elliptic equation via isoperimetric inequalities, Applicable Anal., Vol. 54, 1994, pp. 27-37. Zbl0833.35040MR1382205
- [10] P. Tolksdorf, On the Dirichlet problem for quasilinear equations in domains with conical boundary points, Comm. in P.D.E., Vol. 8(7), 1983, pp. 773-817. Zbl0515.35024MR700735
- [11] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Diff. Eqns., Vol. 51, 1984, pp. 126-150. Zbl0488.35017MR727034
- [12] N.S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. on Pure and Applied Math., Vol. XX, 1967, pp. 721-747. Zbl0153.42703MR226198
- [13] J.L. Vazquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., Vol. 12, 1984, pp. 191-202. Zbl0561.35003MR768629
Citations in EuDML Documents
top- Lucio Damascelli, Filomena Pacella, Monotonicity and symmetry of solutions of -Laplace equations, , via the moving plane method
- Lucio Damascelli, Filomena Pacella, Monotonicity and symmetry of solutions of -Laplace equations, , via the moving plane method
- Akihito Unai, A weak comparison principle for some quasilinear elliptic operators: it compares functions belonging to different spaces
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.