The structure of extremals of a class of second order variational problems

Moshe Marcus; Alexander J. Zaslavski

Annales de l'I.H.P. Analyse non linéaire (1999)

  • Volume: 16, Issue: 5, page 593-629
  • ISSN: 0294-1449

How to cite

top

Marcus, Moshe, and Zaslavski, Alexander J.. "The structure of extremals of a class of second order variational problems." Annales de l'I.H.P. Analyse non linéaire 16.5 (1999): 593-629. <http://eudml.org/doc/78476>.

@article{Marcus1999,
author = {Marcus, Moshe, Zaslavski, Alexander J.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {turnpike properties; -good functions; periodic minimizers; second-order variational problems},
language = {eng},
number = {5},
pages = {593-629},
publisher = {Gauthier-Villars},
title = {The structure of extremals of a class of second order variational problems},
url = {http://eudml.org/doc/78476},
volume = {16},
year = {1999},
}

TY - JOUR
AU - Marcus, Moshe
AU - Zaslavski, Alexander J.
TI - The structure of extremals of a class of second order variational problems
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1999
PB - Gauthier-Villars
VL - 16
IS - 5
SP - 593
EP - 629
LA - eng
KW - turnpike properties; -good functions; periodic minimizers; second-order variational problems
UR - http://eudml.org/doc/78476
ER -

References

top
  1. [1] R.A. Adams, Sobolev spaces, Academic Press, New York, 1975. Zbl0314.46030MR450957
  2. [2] J.P. Aubin and I. Ekeland, Applied nonlinear analysis, Wiley-Interscience, New York, 1984. Zbl0641.47066MR749753
  3. [3] L.D. Berkovitz, Lower semicontinuity of integral functionals, Trans. Amer. Math. Soc., Vol. 192, 1974, pp. 51-57. Zbl0294.49001MR348582
  4. [4] D.A. Carlson, The existence of catching-up optimal solutions for a class of infinite horizon optimal control problems with time delay, SIAM Journal on Control and Optimization, Vol. 28 , 1990, pp. 402-422. Zbl0692.49009MR1040467
  5. [5] D.A. Carlson, A. Jabrane and A. Haurie, Existence of overtaking solutions to infinite dimensional control problems on unbounded time intervals, SIAM Journal on Control and Optimization, Vol. 25, 1987 , pp. 1517-1541. Zbl0658.49003MR912454
  6. [6] D.A. Carlson, A. Haurie and A. Leizarowitz, Infinite horizon optimal control, Springer-Verlag, Berlin, 1991. Zbl0758.49001MR1117222
  7. [7] B.D. Coleman, M. Marcus and V.J. Mizel, On the thermodynamics of periodic phases, Arch. Rational Mech. Anal., Vol. 117, 1992, pp. 321-347. Zbl0788.73015MR1148212
  8. [8] J.L. Kelley, General topology, Van Nostrand , Princeton, NJ, 1955. Zbl0066.16604MR70144
  9. [9] A. Leizarowitz, Infinite horizon autonomous systems with unbounded cost, Appl. Math. Optim., Vol. 13, 1985 , pp. 19-43. Zbl0591.93039MR778419
  10. [10] A. Leizarowitz and V.J. Mizel, One dimensional infinite horizon variational problems arising in continuum mechanics , Arch. Rational Mech. Anal., Vol. 106, 1989, pp. 161- 194. Zbl0672.73010MR980757
  11. [11] V.L. Makarov and A.M. Rubinov, Mathematical theory of econimic dynamics and equilibria, Springer -Verlag, New York, 1977. Zbl0352.90018MR439072
  12. [12] M. Marcus, Uniform estimates for a variational problem with small parameters, Arch. Rational Mech. Anal., Vol. 124, 1993 , pp. 67-98. Zbl0793.49019MR1233648
  13. [13] M. Marcus, Universal properties of stable states of a free energy model with small parameters, Cal. Var. , to appear. Zbl0897.49010MR1606469
  14. [14] V.J. Mizel, L.A. Peletier and W.C. Troy , Periodic phases in second order materials, Preprint, 1997. Zbl0931.74006MR1664530
  15. [15] A.J. Zaslavski, The existence of periodic minimal energy configurations for one-dimensional infinite horizon variational problems arising, in continuum mechanics, J. Math. Anal. Appl., Vol. 194, 1995, pp. 459-476. Zbl0869.49003MR1345049
  16. [16] A.J. Zaslavski, The existence and structure of extremals for a class of second order infinite horizon variational problems, J. Math. Anal. Appl., Vol. 194, 1995, pp. 660-696. Zbl0860.49001MR1350190
  17. [17] A.J. Zaslavski, Structure of extremals for one-dimensional variational problems arising in continuum mechanics , J. Math. Anal. Appl., Vol. 198, 1996, pp. 893-921. Zbl0881.49001MR1377832
  18. [18] A.J. Zaslavski , The asymptotic turnpike property and the uniqueness of a periodic minimal solution for one-dimensional variational problems, Preprint, 1996. MR2039241

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.