The structure of extremals of a class of second order variational problems
Moshe Marcus; Alexander J. Zaslavski
Annales de l'I.H.P. Analyse non linéaire (1999)
- Volume: 16, Issue: 5, page 593-629
- ISSN: 0294-1449
Access Full Article
topHow to cite
topMarcus, Moshe, and Zaslavski, Alexander J.. "The structure of extremals of a class of second order variational problems." Annales de l'I.H.P. Analyse non linéaire 16.5 (1999): 593-629. <http://eudml.org/doc/78476>.
@article{Marcus1999,
author = {Marcus, Moshe, Zaslavski, Alexander J.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {turnpike properties; -good functions; periodic minimizers; second-order variational problems},
language = {eng},
number = {5},
pages = {593-629},
publisher = {Gauthier-Villars},
title = {The structure of extremals of a class of second order variational problems},
url = {http://eudml.org/doc/78476},
volume = {16},
year = {1999},
}
TY - JOUR
AU - Marcus, Moshe
AU - Zaslavski, Alexander J.
TI - The structure of extremals of a class of second order variational problems
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1999
PB - Gauthier-Villars
VL - 16
IS - 5
SP - 593
EP - 629
LA - eng
KW - turnpike properties; -good functions; periodic minimizers; second-order variational problems
UR - http://eudml.org/doc/78476
ER -
References
top- [1] R.A. Adams, Sobolev spaces, Academic Press, New York, 1975. Zbl0314.46030MR450957
- [2] J.P. Aubin and I. Ekeland, Applied nonlinear analysis, Wiley-Interscience, New York, 1984. Zbl0641.47066MR749753
- [3] L.D. Berkovitz, Lower semicontinuity of integral functionals, Trans. Amer. Math. Soc., Vol. 192, 1974, pp. 51-57. Zbl0294.49001MR348582
- [4] D.A. Carlson, The existence of catching-up optimal solutions for a class of infinite horizon optimal control problems with time delay, SIAM Journal on Control and Optimization, Vol. 28 , 1990, pp. 402-422. Zbl0692.49009MR1040467
- [5] D.A. Carlson, A. Jabrane and A. Haurie, Existence of overtaking solutions to infinite dimensional control problems on unbounded time intervals, SIAM Journal on Control and Optimization, Vol. 25, 1987 , pp. 1517-1541. Zbl0658.49003MR912454
- [6] D.A. Carlson, A. Haurie and A. Leizarowitz, Infinite horizon optimal control, Springer-Verlag, Berlin, 1991. Zbl0758.49001MR1117222
- [7] B.D. Coleman, M. Marcus and V.J. Mizel, On the thermodynamics of periodic phases, Arch. Rational Mech. Anal., Vol. 117, 1992, pp. 321-347. Zbl0788.73015MR1148212
- [8] J.L. Kelley, General topology, Van Nostrand , Princeton, NJ, 1955. Zbl0066.16604MR70144
- [9] A. Leizarowitz, Infinite horizon autonomous systems with unbounded cost, Appl. Math. Optim., Vol. 13, 1985 , pp. 19-43. Zbl0591.93039MR778419
- [10] A. Leizarowitz and V.J. Mizel, One dimensional infinite horizon variational problems arising in continuum mechanics , Arch. Rational Mech. Anal., Vol. 106, 1989, pp. 161- 194. Zbl0672.73010MR980757
- [11] V.L. Makarov and A.M. Rubinov, Mathematical theory of econimic dynamics and equilibria, Springer -Verlag, New York, 1977. Zbl0352.90018MR439072
- [12] M. Marcus, Uniform estimates for a variational problem with small parameters, Arch. Rational Mech. Anal., Vol. 124, 1993 , pp. 67-98. Zbl0793.49019MR1233648
- [13] M. Marcus, Universal properties of stable states of a free energy model with small parameters, Cal. Var. , to appear. Zbl0897.49010MR1606469
- [14] V.J. Mizel, L.A. Peletier and W.C. Troy , Periodic phases in second order materials, Preprint, 1997. Zbl0931.74006MR1664530
- [15] A.J. Zaslavski, The existence of periodic minimal energy configurations for one-dimensional infinite horizon variational problems arising, in continuum mechanics, J. Math. Anal. Appl., Vol. 194, 1995, pp. 459-476. Zbl0869.49003MR1345049
- [16] A.J. Zaslavski, The existence and structure of extremals for a class of second order infinite horizon variational problems, J. Math. Anal. Appl., Vol. 194, 1995, pp. 660-696. Zbl0860.49001MR1350190
- [17] A.J. Zaslavski, Structure of extremals for one-dimensional variational problems arising in continuum mechanics , J. Math. Anal. Appl., Vol. 198, 1996, pp. 893-921. Zbl0881.49001MR1377832
- [18] A.J. Zaslavski , The asymptotic turnpike property and the uniqueness of a periodic minimal solution for one-dimensional variational problems, Preprint, 1996. MR2039241
Citations in EuDML Documents
top- Moshe Marcus, Alexander J. Zaslavski, The structure and limiting behavior of locally optimal minimizers
- Alexander J. Zaslavski, Structure of approximate solutions of variational problems with extended-valued convex integrands
- Alexander J. Zaslavski, Structure of approximate solutions of variational problems with extended-valued convex integrands
- Alexander J. Zaslavski, A nonintersection property for extremals of variational problems with vector-valued functions
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.