A hierarchy of hydrodynamic models for plasmas. Zero-electron-mass limits in the drift-diffusion equations

Ansgar Jüngel; Yue-Jun Peng

Annales de l'I.H.P. Analyse non linéaire (2000)

  • Volume: 17, Issue: 1, page 83-118
  • ISSN: 0294-1449

How to cite

top

Jüngel, Ansgar, and Peng, Yue-Jun. "A hierarchy of hydrodynamic models for plasmas. Zero-electron-mass limits in the drift-diffusion equations." Annales de l'I.H.P. Analyse non linéaire 17.1 (2000): 83-118. <http://eudml.org/doc/78488>.

@article{Jüngel2000,
author = {Jüngel, Ansgar, Peng, Yue-Jun},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Euler-Poisson system; zero-relaxation-time limit; quasilinear parabolic equations; asymptotic limit; elliptic parabolic systems},
language = {eng},
number = {1},
pages = {83-118},
publisher = {Gauthier-Villars},
title = {A hierarchy of hydrodynamic models for plasmas. Zero-electron-mass limits in the drift-diffusion equations},
url = {http://eudml.org/doc/78488},
volume = {17},
year = {2000},
}

TY - JOUR
AU - Jüngel, Ansgar
AU - Peng, Yue-Jun
TI - A hierarchy of hydrodynamic models for plasmas. Zero-electron-mass limits in the drift-diffusion equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2000
PB - Gauthier-Villars
VL - 17
IS - 1
SP - 83
EP - 118
LA - eng
KW - Euler-Poisson system; zero-relaxation-time limit; quasilinear parabolic equations; asymptotic limit; elliptic parabolic systems
UR - http://eudml.org/doc/78488
ER -

References

top
  1. [1] S. Antontsev, A. Domansky and J.I. Díaz, Continuous dependence and stabilization of solutions of the degenerate system in two-phase filtration, Dinamika Sploshnoi Sredy107 (1993) 11-25. Zbl0831.76078MR1304988
  2. [2] H. Beirao Da Veiga, On the W2,p-regularity for solutions of mixed problems, J. Math. Pures Appl.53 (1974) 279-290. Zbl0264.35017
  3. [3] H. Brézis, Convergence in D' and in L1 under strict convexity, in: J.-L. Lions (Ed.), Boundary Value Problems for Partial Differential Equations and Applications, Res. Notes Appl. Math.29, Masson, 1993, pp. 43-52. Zbl0813.49016MR1260437
  4. [4] S. Cordier, Global solutions to the isothermal Euler-Poisson plasma model, Appl. Math. Lett.8 (1994) 19-24. Zbl0817.76102MR1355145
  5. [5] S. Cordier and Y.-J. Peng, Système Euler-Poisson non linéaire—existence globale de solutions faibles entropiques, Mod. Math. Anal. Num. 32 (1998) 1-23. Zbl0935.35119MR1619591
  6. [6] J.I. Díaz, G. Galiano and A. Jüngel, On a quasilinear degenerate system arising in semiconductor theory, Part I: Existence and uniqueness of solutions, To appear in Nonlin. Anal. TMA (2000). Zbl0994.35072
  7. [7] J.I. Díaz, G. Galiano and A. Jüngel, Space localization and uniqueness of vacuum solutions to a degenerate parabolic problem in semiconductor theory, C. R. Acad. Sci. Paris325 (1997) 267-272. Zbl0883.35007MR1464818
  8. [8] G. Gagneux and M. Madaune-Tort, Sur la question de l'unicité pour les inéquations des milieux poreux, C. R. Acad. Sci. Paris314 (1992) 605-608. Zbl0746.76082MR1158745
  9. [9] C. Gardner, Numerical simulation of a steady-state electron shock wave in a submicron semiconductor device, IEEE Trans. El. Dev.38 (1991) 392-398. 
  10. [10] T. Goudon, A. Jüngel and Y-J. Peng, Zero-electron-mass limits in hydrodynamic models for plasmas, Appl. Math. Lett.12 (1999) 75-79. Zbl0959.76096MR1750602
  11. [11] K. Gröger and J. Rehberg, Uniqueness for the two-dimensional semiconductor equations in case of high carrier densities, Math. Z.213 (1993) 523-530. Zbl0790.35049MR1231876
  12. [12] X. Jiang, A streamline-upwinding/Petrov-Galerkin method for the hydrodynamic semiconductor device model, Math. Models Meth. Appl. Sci.5 (1995) 659-681. Zbl0833.76036MR1347152
  13. [13] A. Jüngel, On the existence and uniqueness of transient solutions of a degenerate nonlinear drift-diffusion model for semiconductors, Math. Models Meth. Appl. Sci.4 (1994) 677-703. Zbl0820.35128MR1300812
  14. [14] A. Jüngel, Numerical approximation of a drift-diffusion model for semiconductors with nonlinear diffusion, Z. Angew. Math. Mech.75 (1995) 783-799. Zbl0866.35056MR1358825
  15. [15] A. Jüngel, Qualitative behavior of solutions of a degenerate nonlinear drift-diffusion model for semiconductors, Math. Models Meth. Appl. Sci.5 (1995) 497- 518. Zbl0841.35114MR1335830
  16. [16] A. Jüngel, A nonlinear drift-diffusion system with electric convection arising in semiconductor and electrophoretic modeling, Math. Nachr.185 (1997) 85-110. Zbl1157.35406MR1452478
  17. [17] A. Jüngel and Y.-J. Peng, A hierarchy of hydrodynamic plasma models. Zero-relaxation-time limits, Comm. P. D. E.24 (1999) 1007-1033. Zbl0946.35074MR1680885
  18. [18] O.A. Ladyzenskaya, V.A. Solonnikov and N.N. Ural'Ceva, Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc., Providence, RI, 1968. 
  19. [19] P.A. Markowich, The Stationary Semiconductor Device Equations, Springer, Wien, 1986. MR821965
  20. [20] P. Marcati and R. Natalini, Weak solutions to a hydrodynamic model for semiconductors: The Cauchy problem, Proc. Roy. Soc. Edinburgh Sect. A125 (1995) 115-131. Zbl0831.35157MR1318626
  21. [21] P. Marcati and R. Natalini, Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation, Arch. Rat. Mech. Anal.129 (1995) 129-145. Zbl0829.35128MR1328473
  22. [22] R. Natalini, The bipolar hydrodynamic model for semiconductors and the drift-diffusion equation, J. Math. Anal. Appl.198 (1996) 262-281. Zbl0889.35109MR1373540
  23. [23] Y-J. Peng, Convergence of the fractional step Lax-Friedrichs scheme and Godunov scheme for a nonlinear Euler-Poisson system, Nonlin. Anal. (1999) (to appear). Zbl0965.65113MR1780453
  24. [24] F. Poupaud, M. Rascle and J. Vila, Global solutions to the isothermal Euler-Poisson system with arbitrarily large data, J. Differential Equations123 (1995) 93-121. Zbl0845.35123MR1359913
  25. [25] P. Raviart, On singular perturbation problems for the nonlinear Poisson equation or: A mathematical approach to electrostatic sheaths and plasma erosion, Lecture Notes of the Summer School in Ile d'Oléron, France, 1997, pp. 452-539. 
  26. [26] J. Simon, Compact sets in the space Lp(0, T; B), Ann. Math. Pura Appl.146 (1987) 65-96. Zbl0629.46031MR916688
  27. [27] G. Stampacchia, Equations Elliptiques du Second Ordre à Coefficients Disconti- nus, Les Presses de l'Université de Montréal, Canada, 1966. Zbl0151.15501MR251373
  28. [28] G.M. Troianiello, Elliptic Differential Equations and Obstacle Problems, Plenum Press, New York, 1987. Zbl0655.35002MR1094820
  29. [29] A. Visintin, Strong convergence results related to strict convexity, Comm. Partial Differential Equations9 (1984) 439-466. Zbl0545.49019MR741216
  30. [30] E. Zeidler, Nonlinear Functional Analysis and its Applications, Vol. II, Springer, New York, 1990. Zbl0684.47029

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.