Multiplicity of solutions for quasilinear elliptic problems involving critical Sobolev exponents
Elves A. B. Silva; Magda S Xavier
Annales de l'I.H.P. Analyse non linéaire (2003)
- Volume: 20, Issue: 2, page 341-358
- ISSN: 0294-1449
Access Full Article
topHow to cite
topSilva, Elves A. B., and Xavier, Magda S. "Multiplicity of solutions for quasilinear elliptic problems involving critical Sobolev exponents." Annales de l'I.H.P. Analyse non linéaire 20.2 (2003): 341-358. <http://eudml.org/doc/78582>.
@article{Silva2003,
author = {Silva, Elves A. B., Xavier, Magda S},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {-Laplacian operator; quasilinear elliptic equation; critical Sobolev exponent; critical growth; Palais-Smale condition},
language = {eng},
number = {2},
pages = {341-358},
publisher = {Elsevier},
title = {Multiplicity of solutions for quasilinear elliptic problems involving critical Sobolev exponents},
url = {http://eudml.org/doc/78582},
volume = {20},
year = {2003},
}
TY - JOUR
AU - Silva, Elves A. B.
AU - Xavier, Magda S
TI - Multiplicity of solutions for quasilinear elliptic problems involving critical Sobolev exponents
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2003
PB - Elsevier
VL - 20
IS - 2
SP - 341
EP - 358
LA - eng
KW - -Laplacian operator; quasilinear elliptic equation; critical Sobolev exponent; critical growth; Palais-Smale condition
UR - http://eudml.org/doc/78582
ER -
References
top- [1] Alves C.O., Gonçalves J.V., Existence of positive solutions for m-Laplacian equations RN involving critical Sobolev exponents, Nonlinear Anal. TMA32 (1998) 53-70. Zbl0892.35062MR1491613
- [2] Ambrosetti A., Rabinowitz P.H., Dual variational methods in critical point theory and applications, J. Funct. Anal.14 (1973) 349-381. Zbl0273.49063MR370183
- [3] Ambrosetti A., Struwe M., A note on the problem −Δu=λu+u|u|2∗−2, Manuscripta Math.54 (1986) 373-379. Zbl0596.35043
- [4] Anane A., Simplicité et isolation de la première valeur propre du p-Laplacien avec poids, C. R. Acad. Sci. Paris, Ser. I305 (1987) 725-728. Zbl0633.35061MR920052
- [5] Bartolo P., Benci V., Fortunato D., Abstract critical point theorems and applications to some nonlinear problems with “strong” resonance at infinity, Nonlinear Anal. TMA7 (9) (1983) 981-1012. Zbl0522.58012
- [6] Brézis H., Nirenberg L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math.36 (1983) 437-477. Zbl0541.35029MR709644
- [7] Capozzi A., Fortunato D., Palmieri G., An existence result for nonlinear elliptic problems involving critical Sobolev exponent, Ann. Inst. H. Poincaré, Analyse Non Linéaire2 (6) (1985) 463-470. Zbl0612.35053MR831041
- [8] Cerami G., Fortunato D., Struwe M., Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents, Ann. Inst. H. Poincaré, Analyse Non Linéaire1 (1984) 341-350. Zbl0568.35039MR779872
- [9] Costa D.G., Silva E.A.B., A note on problems involving critical Sobolev exponents, Differential and Integral Equations8 (3) (1995) 673-679. Zbl0812.35046MR1306583
- [10] DeFigueiredo D.G., The Ekeland Variational Principle with Applications and Detours, Springer-Verlag, New York, 1989.
- [11] Drábek P., Huang Y.X., Multiplicity of positive solutions for some quasilinear elliptic equation in RN with critical Sobolev exponent, J. Differential Equations140 (1997) 106-132. Zbl0902.35035MR1473856
- [12] Folland G.B., Real Analysis, Wiley, 1984. Zbl0924.28001MR767633
- [13] Fucik S., John O., Necas J., On the existence of Schauder basis in Sobolev spaces, Comment. Math. Univ. Carolin.13 (1972) 163-175. Zbl0231.46064MR306890
- [14] Garcia Azorero J., Peral Alonso I., Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term, Trans. Amer. Math. Soc.323 (2) (1991) 877-895. Zbl0729.35051MR1083144
- [15] Ghoussoub N., Yuan C., Multiple solutions for quasilinear PDES involving the critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc.352 (12) (2000) 5703-5743. Zbl0956.35056MR1695021
- [16] Guedda M., Veron L., Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal. TMA13 (8) (1989) 879-902. Zbl0714.35032MR1009077
- [17] Gazzola F., Ruf B., Lower-order perturbations of critical growth nonlinearities in semilinear elliptic equations, Advances in Differential Equations2 (4) (1997) 555-572. Zbl1023.35508MR1441856
- [18] Lindenstrauss J., Tzafriri L., Classical Banach Spaces I, Springer-Verlag, Berlin, 1977. Zbl0852.46015MR500056
- [19] Lions P.L., The concentration-compactness principle in the calculus of variations. The limit case, part 1, 2, Rev. Mat. Iberoamericana1 (1985) 145-201, pp. 45–121. Zbl0704.49005MR850686
- [20] Marti J.T., Introduction to the Theory of Bases, Springer-Verlag, New York, 1969. Zbl0191.41301MR438075
- [21] Rabinowitz P.H., Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conf. Ser. in Math., 65, AMS, Providence, RI, 1986. Zbl0609.58002MR845785
- [22] E.A.B. Silva, Critical point theorems and applications to differential equations, Ph.D. Thesis, University of Wisconsin-Madison, 1988.
- [23] Silva E.A.B., Linking theorems and applications to semilinear elliptic problems at resonance, Nonlinear Anal. TMA16 (1991) 455-477. Zbl0731.35042MR1093380
- [24] Silva E.A.B., Soares S.H.M., Quasilinear Dirichlet problems in RN with critical growth, Nonlinear Anal. TMA43 (2001) 1-20. Zbl1158.35368MR1784441
- [25] Wei Z., Wu X., A multiplicity result for quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal. TMA18 (6) (1992) 559-567. Zbl0762.35034MR1154480
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.