Homoclinic bifurcations and uniform hyperbolicity for three-dimensional flows
Aubin Arroyo; Federico Rodriguez Hertz
Annales de l'I.H.P. Analyse non linéaire (2003)
- Volume: 20, Issue: 5, page 805-841
- ISSN: 0294-1449
Access Full Article
topHow to cite
topArroyo, Aubin, and Rodriguez Hertz, Federico. "Homoclinic bifurcations and uniform hyperbolicity for three-dimensional flows." Annales de l'I.H.P. Analyse non linéaire 20.5 (2003): 805-841. <http://eudml.org/doc/78598>.
@article{Arroyo2003,
author = {Arroyo, Aubin, Rodriguez Hertz, Federico},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {-vector field; three-dimensional manifold; -topology; uniformly hyperbolic; homoclinic tangency; singular cycle; Poincaré flow; dominated splitting},
language = {eng},
number = {5},
pages = {805-841},
publisher = {Elsevier},
title = {Homoclinic bifurcations and uniform hyperbolicity for three-dimensional flows},
url = {http://eudml.org/doc/78598},
volume = {20},
year = {2003},
}
TY - JOUR
AU - Arroyo, Aubin
AU - Rodriguez Hertz, Federico
TI - Homoclinic bifurcations and uniform hyperbolicity for three-dimensional flows
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2003
PB - Elsevier
VL - 20
IS - 5
SP - 805
EP - 841
LA - eng
KW - -vector field; three-dimensional manifold; -topology; uniformly hyperbolic; homoclinic tangency; singular cycle; Poincaré flow; dominated splitting
UR - http://eudml.org/doc/78598
ER -
References
top- [1] Bonatti C., Viana M., SRB measures for partially hyperbolic dynamical systems whose central direction is mostly contracting, Israel J. Math.115 (2000) 157-193. Zbl0996.37033MR1749677
- [2] C.I. Doering, Persistently transitive vector fields on three manifolds, in: Dynam. Syst. Biff. Theory, Pitman Res. Notes, Vol. 160, 59–89. Zbl0631.58016MR907891
- [3] Guckenheimer J., Williams R.F., Structural stability of Lorenz attractors, Inst. Hautes Études Sci. Publ. Math.50 (1979) 59-72. Zbl0436.58018MR556582
- [4] Hayashi S., Connecting invariant manifolds and the solution of the C1 stability and Ω-stability conjectures for flows, Ann. of Math. (2)145 (1) (1997) 81-137. Zbl0871.58067
- [5] Herman M.-R., Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Inst. Hautes Études Sci. Publ. Math.49 (1979) 5-233. Zbl0448.58019MR538680
- [6] Hirsch M.W., Pugh C.C., Shub M., Invariant Manifolds, Lecture Notes in Math., 583, Springer-Verlag, Berlin, 1977. Zbl0355.58009MR501173
- [7] Labarca R., Pacífico M.J., Stability of singularity horseshoes, Topology25 (3) (1986) 337-352. Zbl0611.58033MR842429
- [8] Mañé R., Ergodic Theory and Differential Dynamics, Springer-Verlag, New York, 1987. Zbl0616.28007MR889254
- [9] Morales C.A., Pacífico M.J., Pujals E., On C1 robust singular transitive sets for three-dimensional flows, C. R. Acad. Sci. Paris Sér. I Math.326 (1) (1998) 81-86. Zbl0918.58036MR1649489
- [10] Newhouse S., Diffeomorphisms with infinitely many sinks, Topology13 (1974) 9-18. Zbl0275.58016MR339291
- [11] Newhouse S., Hyperbolic Limit Sets, Trans. Amer. Math. Soc.167 (1972) 125-150. Zbl0239.58009MR295388
- [12] Newhouse S., Lectures on dynamical systems, in: Progr. Math., 8, Birkhäuser, Boston, MA, 1980, pp. 1-114. Zbl0444.58001MR589590
- [13] Oseledets V.I., A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems, Trans. Moscow Math. Soc.19 (1968) 197-231. Zbl0236.93034
- [14] Palis J., A global view of dynamics and a conjecture on the denseness of finitude of attractors, Asterisque261 (2000) 339-351. Zbl1044.37014MR1755446
- [15] Palis J., On Morse–Smale dynamical systems, Topology8 (1968) 385-404. Zbl0189.23902MR246316
- [16] Palis J., Smale S., Structural stability theorems, Proc. Amer. Math. Soc. Symp. Pure Math.14 (1970) 223-232. Zbl0214.50702MR267603
- [17] Palis J., Takens F., Hyperbolicity and Sensitive Chaotic Dynamics of Homoclinic Bifurcations, Cambridge Univ. Press, Cambridge, 1993. Zbl0790.58014MR1237641
- [18] Pliss V.A., On a Conjecture of Smale, Differentsial'nye Uravneniya8 (1972) 268-282. Zbl0243.34077MR299909
- [19] Pugh C., The closing lemma, Amer. J. Math.89 (1967) 956-1009. Zbl0167.21803MR226669
- [20] Pugh C., An improved closing lemma and a general density theorem, Amer. J. Math.89 (1967) 1010-1021. Zbl0167.21804MR226670
- [21] Pujals E., Sambarino M., Homoclinic tangencies and hyperbolicity for surface diffeomorphisms, Ann. of Math. (2)151 (3) (2000) 961-1023. Zbl0959.37040MR1779562
- [22] E. Pujals, M. Sambarino, On the dynamics of dominated splitting, to appear. Zbl1178.37032
- [23] Schwartz A.J., A generalization of a Poincaré–Bendixon theorem to closed two dimensional manifolds, Amer. J. Math.85 (1963) 453-458, Errata, ibid 85 (1963) 753. Zbl0116.06803MR155061
- [24] Smale S., Differentiable dynamical systems, Bull. Amer. Math. Soc.73 (1967) 747-817. Zbl0202.55202MR228014
- [25] A. Tahzibi, Stably ergodic systems which are not partially hyperbolic, to appear. Zbl1052.37019
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.