Nonlinear eigenvalues and bifurcation problems for Pucci's operators
Jérôme Busca; Maria J. Esteban; Alexander Quaas
Annales de l'I.H.P. Analyse non linéaire (2005)
- Volume: 22, Issue: 2, page 187-206
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBusca, Jérôme, Esteban, Maria J., and Quaas, Alexander. "Nonlinear eigenvalues and bifurcation problems for Pucci's operators." Annales de l'I.H.P. Analyse non linéaire 22.2 (2005): 187-206. <http://eudml.org/doc/78653>.
@article{Busca2005,
author = {Busca, Jérôme, Esteban, Maria J., Quaas, Alexander},
journal = {Annales de l'I.H.P. Analyse non linéaire},
language = {eng},
number = {2},
pages = {187-206},
publisher = {Elsevier},
title = {Nonlinear eigenvalues and bifurcation problems for Pucci's operators},
url = {http://eudml.org/doc/78653},
volume = {22},
year = {2005},
}
TY - JOUR
AU - Busca, Jérôme
AU - Esteban, Maria J.
AU - Quaas, Alexander
TI - Nonlinear eigenvalues and bifurcation problems for Pucci's operators
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2005
PB - Elsevier
VL - 22
IS - 2
SP - 187
EP - 206
LA - eng
UR - http://eudml.org/doc/78653
ER -
References
top- [1] Bardi M., Da Lio F., Propagation of maxima and strong maximum principle for viscosity solution of degenerate elliptic equation I: convex operators, Nonlinear Anal.44 (2001) 991-1006. Zbl1135.35342MR1829815
- [2] Bensoussan A., Lions J.L., Applications of Variational Inequalities in Stochastic Control, Stud. Math. Appl. 12, North-Holland, Amsterdam, 1982, Translated from the French. Zbl0478.49002MR653144
- [3] Berestycki H., On some nonlinear Sturm–Liouville problems, J. Differential Equations26 (3) (1977) 375-390. Zbl0331.34020MR481230
- [4] Berestycki H., Nirenberg L., On the method of moving planes and the sliding method, Boll. Soc. Brasil Mat. (N.S.)22 (1991) 237-275. Zbl0784.35025MR1159383
- [5] Berestycki H., Nirenberg L., Varadhan S.R.S., The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math.47 (1) (1994) 47-92. Zbl0806.35129MR1258192
- [6] Cabré X., Caffarelli L.A., Fully Nonlinear Elliptic Equation, Amer. Math. Soc. Colloq. Publ., vol. 43, Amer. Math. Soc., 1995. Zbl0834.35002MR1351007
- [7] Caffarelli L., Kohn J.J., Nirenberg L., Spruck J., The Dirichlet problem for nonlinear second order elliptic equations II, Comm. Pure Appl. Math.38 (1985) 209-252. Zbl0598.35048MR780073
- [8] Crandall M., Ishi H., Lions P.L., User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc.27 (1) (1992). Zbl0755.35015MR1118699
- [9] Crandall M.G., Kocan M., Świech A., theory for fully nonlinear uniformly parabolic equations, Comm. Partial Differential Equations25 (11&12) (2000) 1997-2053. Zbl0973.35097MR1789919
- [10] Dancer E.N., On the Dirichlet problem for weakly non-linear elliptic partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A76 (4) (1976/77) 283-300. Zbl0351.35037MR499709
- [11] del Pino M., Elgueta M., Manásevich R., A homotopic deformation along pof a Leray–Schauder degree result and existence for , , , J. Differential Equations80 (1) (1989) 1-13. Zbl0708.34019MR1003248
- [12] del Pino M., Manásevich R., F. Global bifurcation from the eigenvalues of the p-Laplacian, J. Differential Equations92 (2) (1991) 226-251. Zbl0781.35017MR1120904
- [13] Drábek P., Solvability and Bifurcations of Nonlinear Equations, Pitman Res. Notes Math. Ser., vol. 264, Longman Scientific and Technical, Harlow, 1992, copublished in the United States with John Wiley and Sons, New York, 1992. Zbl0753.34002MR1175397
- [14] Felmer P., Quaas A., Critical exponents for the Pucci's extremal operators, C. R. Acad. Sci. Paris, Ser. I335 (2002) 909-914. Zbl1032.35069MR1952548
- [15] Felmer P., Quaas A., On critical exponents for the Pucci's extremal operators, Ann Inst. H. Poicaré Anal. Non Linéaire20 (5) (2003) 843-865. Zbl1274.35115MR1995504
- [16] Felmer P., Quaas A., Positive solutions to ‘semilinear’ equation involving the Pucci's operator, J. Differential Equations199 (2004) 376-393. Zbl1070.34032
- [17] de Figueiredo D., Gossez J.P., On the first curve of the Fučik spectrum of an elliptic operator, Differential Integral Equations7 (5–6) (1994) 1285-1302. Zbl0797.35032MR1269657
- [18] Fučík S., Solvability of Nonlinear Equations and Boundary Value Problems, Math. Appl., vol. 4, Reidel, 1980, With a foreword by Jean Mawhin. Zbl0453.47035MR620638
- [19] Gallouet T., Kavian O., Résultats d'existence et de non-existence pour certains problemes demi-linéaires a l'infini, (in French. English summary), Ann. Fac. Sci. Toulouse Math.5 (3–4) (1981) 201-246. Zbl0495.35001MR658734
- [20] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equation of Second Order, Springer-Verlag, 1983. Zbl0562.35001MR737190
- [21] Lions P.L., Bifurcation and optimal stochastic control, Nonlinear Anal.2 (1983) 177-207. MR688774
- [22] Lions P.L., Optimal control of diffusion processes and Hamilton–Jacobi–Bellman equations. I. The dynamic programming principle and applications, Comm. Partial Differential Equations8 (10) (1983) 1101-1174. Zbl0716.49022MR709164
- [23] Lions P.L., Optimal control of diffusion processes and Hamilton–Jacobi–Bellman equations. II. Viscosity solutions and uniqueness, Comm. Partial Differential Equations8 (11) (1983) 1229-1276. Zbl0716.49023MR709162
- [24] Lions P.L., Optimal control of diffusion processes and Hamilton–Jacobi–Bellman equations. III. Regularity of the optimal cost function, in: Nonlinear Partial Differential Equations and Their Applications. Collège de France seminar, vol. V (Paris, 1981/1982), 1983, pp. 95-205. Zbl0716.49024MR725360
- [25] Lions P.L., A remark on Bony maximum principle, Proc. Amer. Math. Soc.88 (3) (1983) 503-508. Zbl0525.35028MR699422
- [26] Lions P.L., Two remarks on Monge–Ampère equations, Ann. Mat. Pura Appl.142 (4) (1985) 263-275. Zbl0594.35023MR839040
- [27] Ni W.M., Nussbaum R., Uniqueness and nonuniqueness for positive radial solutions of , Comm. Pure Appl. Math.38 (1985) 67-108. Zbl0581.35021MR768105
- [28] Pucci C., Operatori ellittici estremanti, Ann. Mat. Pure Appl.72 (1966) 141-170. Zbl0154.12402MR208150
- [29] Pucci C., Maximum and minimum first eigenvalue for a class of elliptic operators, Proc. Amer. Math. Soc.17 (1966) 788-795. Zbl0149.07601MR199576
- [30] Quaas A., Existence of positive solutions to a ‘semilinear’ equation involving the Pucci's operator in a convex domain, Differential Integral Equations17 (2004) 481-494. Zbl1174.35373
- [31] Rabinowitz P.H., Some aspect of nonlinear eigenvalue problem, Rocky Moutain J. Math.74 (3) (1973) 161-202. Zbl0255.47069MR320850
- [32] Rabinowitz P.H., Some global results for nonlinear eigenvalue problems, J. Funct. Anal.7 (1971) 487-513. Zbl0212.16504MR301587
- [33] P.H. Rabinowitz, Théorie du degré topologique et applications à des problèmes aux limites non linéaires, Lectures Notes Lab. Analyse Numérique Université PARIS VI, 1975.
- [34] E. Rouy, First semi-eigenvalue for nonlinear elliptic operator, preprint. Zbl0764.65052
- [35] Safonov M.V., On the classical solution of Bellman elliptic equation, Soviet Math. Dokl.30 (1984). Zbl0595.35011
- [36] Schechter M., The Fučík spectrum, Indiana Univ. Math. J.43 (4) (1994) 1139-1157. Zbl0833.35050MR1322614
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.