Nonlinear eigenvalues and bifurcation problems for Pucci's operators

Jérôme Busca; Maria J. Esteban; Alexander Quaas

Annales de l'I.H.P. Analyse non linéaire (2005)

  • Volume: 22, Issue: 2, page 187-206
  • ISSN: 0294-1449

How to cite

top

Busca, Jérôme, Esteban, Maria J., and Quaas, Alexander. "Nonlinear eigenvalues and bifurcation problems for Pucci's operators." Annales de l'I.H.P. Analyse non linéaire 22.2 (2005): 187-206. <http://eudml.org/doc/78653>.

@article{Busca2005,
author = {Busca, Jérôme, Esteban, Maria J., Quaas, Alexander},
journal = {Annales de l'I.H.P. Analyse non linéaire},
language = {eng},
number = {2},
pages = {187-206},
publisher = {Elsevier},
title = {Nonlinear eigenvalues and bifurcation problems for Pucci's operators},
url = {http://eudml.org/doc/78653},
volume = {22},
year = {2005},
}

TY - JOUR
AU - Busca, Jérôme
AU - Esteban, Maria J.
AU - Quaas, Alexander
TI - Nonlinear eigenvalues and bifurcation problems for Pucci's operators
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2005
PB - Elsevier
VL - 22
IS - 2
SP - 187
EP - 206
LA - eng
UR - http://eudml.org/doc/78653
ER -

References

top
  1. [1] Bardi M., Da Lio F., Propagation of maxima and strong maximum principle for viscosity solution of degenerate elliptic equation I: convex operators, Nonlinear Anal.44 (2001) 991-1006. Zbl1135.35342MR1829815
  2. [2] Bensoussan A., Lions J.L., Applications of Variational Inequalities in Stochastic Control, Stud. Math. Appl. 12, North-Holland, Amsterdam, 1982, Translated from the French. Zbl0478.49002MR653144
  3. [3] Berestycki H., On some nonlinear Sturm–Liouville problems, J. Differential Equations26 (3) (1977) 375-390. Zbl0331.34020MR481230
  4. [4] Berestycki H., Nirenberg L., On the method of moving planes and the sliding method, Boll. Soc. Brasil Mat. (N.S.)22 (1991) 237-275. Zbl0784.35025MR1159383
  5. [5] Berestycki H., Nirenberg L., Varadhan S.R.S., The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math.47 (1) (1994) 47-92. Zbl0806.35129MR1258192
  6. [6] Cabré X., Caffarelli L.A., Fully Nonlinear Elliptic Equation, Amer. Math. Soc. Colloq. Publ., vol. 43, Amer. Math. Soc., 1995. Zbl0834.35002MR1351007
  7. [7] Caffarelli L., Kohn J.J., Nirenberg L., Spruck J., The Dirichlet problem for nonlinear second order elliptic equations II, Comm. Pure Appl. Math.38 (1985) 209-252. Zbl0598.35048MR780073
  8. [8] Crandall M., Ishi H., Lions P.L., User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc.27 (1) (1992). Zbl0755.35015MR1118699
  9. [9] Crandall M.G., Kocan M., Świech A., L p theory for fully nonlinear uniformly parabolic equations, Comm. Partial Differential Equations25 (11&12) (2000) 1997-2053. Zbl0973.35097MR1789919
  10. [10] Dancer E.N., On the Dirichlet problem for weakly non-linear elliptic partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A76 (4) (1976/77) 283-300. Zbl0351.35037MR499709
  11. [11] del Pino M., Elgueta M., Manásevich R., A homotopic deformation along pof a Leray–Schauder degree result and existence for u ' p - 2 u ' ' + f t , u = 0 , u 0 = u T = 0 , p g t ; 1 , J. Differential Equations80 (1) (1989) 1-13. Zbl0708.34019MR1003248
  12. [12] del Pino M., Manásevich R., F. Global bifurcation from the eigenvalues of the p-Laplacian, J. Differential Equations92 (2) (1991) 226-251. Zbl0781.35017MR1120904
  13. [13] Drábek P., Solvability and Bifurcations of Nonlinear Equations, Pitman Res. Notes Math. Ser., vol. 264, Longman Scientific and Technical, Harlow, 1992, copublished in the United States with John Wiley and Sons, New York, 1992. Zbl0753.34002MR1175397
  14. [14] Felmer P., Quaas A., Critical exponents for the Pucci's extremal operators, C. R. Acad. Sci. Paris, Ser. I335 (2002) 909-914. Zbl1032.35069MR1952548
  15. [15] Felmer P., Quaas A., On critical exponents for the Pucci's extremal operators, Ann Inst. H. Poicaré Anal. Non Linéaire20 (5) (2003) 843-865. Zbl1274.35115MR1995504
  16. [16] Felmer P., Quaas A., Positive solutions to ‘semilinear’ equation involving the Pucci's operator, J. Differential Equations199 (2004) 376-393. Zbl1070.34032
  17. [17] de Figueiredo D., Gossez J.P., On the first curve of the Fučik spectrum of an elliptic operator, Differential Integral Equations7 (5–6) (1994) 1285-1302. Zbl0797.35032MR1269657
  18. [18] Fučík S., Solvability of Nonlinear Equations and Boundary Value Problems, Math. Appl., vol. 4, Reidel, 1980, With a foreword by Jean Mawhin. Zbl0453.47035MR620638
  19. [19] Gallouet T., Kavian O., Résultats d'existence et de non-existence pour certains problemes demi-linéaires a l'infini, (in French. English summary), Ann. Fac. Sci. Toulouse Math.5 (3–4) (1981) 201-246. Zbl0495.35001MR658734
  20. [20] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equation of Second Order, Springer-Verlag, 1983. Zbl0562.35001MR737190
  21. [21] Lions P.L., Bifurcation and optimal stochastic control, Nonlinear Anal.2 (1983) 177-207. MR688774
  22. [22] Lions P.L., Optimal control of diffusion processes and Hamilton–Jacobi–Bellman equations. I. The dynamic programming principle and applications, Comm. Partial Differential Equations8 (10) (1983) 1101-1174. Zbl0716.49022MR709164
  23. [23] Lions P.L., Optimal control of diffusion processes and Hamilton–Jacobi–Bellman equations. II. Viscosity solutions and uniqueness, Comm. Partial Differential Equations8 (11) (1983) 1229-1276. Zbl0716.49023MR709162
  24. [24] Lions P.L., Optimal control of diffusion processes and Hamilton–Jacobi–Bellman equations. III. Regularity of the optimal cost function, in: Nonlinear Partial Differential Equations and Their Applications. Collège de France seminar, vol. V (Paris, 1981/1982), 1983, pp. 95-205. Zbl0716.49024MR725360
  25. [25] Lions P.L., A remark on Bony maximum principle, Proc. Amer. Math. Soc.88 (3) (1983) 503-508. Zbl0525.35028MR699422
  26. [26] Lions P.L., Two remarks on Monge–Ampère equations, Ann. Mat. Pura Appl.142 (4) (1985) 263-275. Zbl0594.35023MR839040
  27. [27] Ni W.M., Nussbaum R., Uniqueness and nonuniqueness for positive radial solutions of Δ u + f u , r = 0 , Comm. Pure Appl. Math.38 (1985) 67-108. Zbl0581.35021MR768105
  28. [28] Pucci C., Operatori ellittici estremanti, Ann. Mat. Pure Appl.72 (1966) 141-170. Zbl0154.12402MR208150
  29. [29] Pucci C., Maximum and minimum first eigenvalue for a class of elliptic operators, Proc. Amer. Math. Soc.17 (1966) 788-795. Zbl0149.07601MR199576
  30. [30] Quaas A., Existence of positive solutions to a ‘semilinear’ equation involving the Pucci's operator in a convex domain, Differential Integral Equations17 (2004) 481-494. Zbl1174.35373
  31. [31] Rabinowitz P.H., Some aspect of nonlinear eigenvalue problem, Rocky Moutain J. Math.74 (3) (1973) 161-202. Zbl0255.47069MR320850
  32. [32] Rabinowitz P.H., Some global results for nonlinear eigenvalue problems, J. Funct. Anal.7 (1971) 487-513. Zbl0212.16504MR301587
  33. [33] P.H. Rabinowitz, Théorie du degré topologique et applications à des problèmes aux limites non linéaires, Lectures Notes Lab. Analyse Numérique Université PARIS VI, 1975. 
  34. [34] E. Rouy, First semi-eigenvalue for nonlinear elliptic operator, preprint. Zbl0764.65052
  35. [35] Safonov M.V., On the classical solution of Bellman elliptic equation, Soviet Math. Dokl.30 (1984). Zbl0595.35011
  36. [36] Schechter M., The Fučík spectrum, Indiana Univ. Math. J.43 (4) (1994) 1139-1157. Zbl0833.35050MR1322614

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.