Global solutions to vortex density equations arising from sup-conductivity
Annales de l'I.H.P. Analyse non linéaire (2005)
- Volume: 22, Issue: 4, page 441-458
- ISSN: 0294-1449
Access Full Article
topHow to cite
topMasmoudi, Nader, and Zhang, Ping. "Global solutions to vortex density equations arising from sup-conductivity." Annales de l'I.H.P. Analyse non linéaire 22.4 (2005): 441-458. <http://eudml.org/doc/78663>.
@article{Masmoudi2005,
author = {Masmoudi, Nader, Zhang, Ping},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Superconductivity; Vortex density; Young measure; Renormalized solutions},
language = {eng},
number = {4},
pages = {441-458},
publisher = {Elsevier},
title = {Global solutions to vortex density equations arising from sup-conductivity},
url = {http://eudml.org/doc/78663},
volume = {22},
year = {2005},
}
TY - JOUR
AU - Masmoudi, Nader
AU - Zhang, Ping
TI - Global solutions to vortex density equations arising from sup-conductivity
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2005
PB - Elsevier
VL - 22
IS - 4
SP - 441
EP - 458
LA - eng
KW - Superconductivity; Vortex density; Young measure; Renormalized solutions
UR - http://eudml.org/doc/78663
ER -
References
top- [1] Chapman J.S., Rubinstein J.K., Schatzman M., A mean-field model of superconducting vortices, Eur. J. Appl. Math.7 (1996) 97-111. Zbl0849.35135MR1388106
- [2] Chemin J.Y., Persistance de structures géométriques dans les fluides incompressibles bidimensionnels, Ann. Sci. École Norm. Sup.26 (1993) 517-542. Zbl0779.76011MR1235440
- [3] DiPerna R.J., Lions P.L., Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math.98 (1989) 511-547. Zbl0696.34049MR1022305
- [4] DiPerna R.J., Lions P.L., On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. of Math. (2)130 (1989) 321-366. Zbl0698.45010MR1014927
- [5] DiPerna R.J., Majda A., Oscillations and concentrations in weak solutions of the incompressible fluid equations, Comm. Math. Phys.108 (1987) 667-689. Zbl0626.35059MR877643
- [6] Du Q., Zhang P., Existence of weak solutions to some vortex density models, SIAM J. Math. Anal.34 (2003) 1279-1299. Zbl1044.35085MR2000970
- [7] Delort J.M., Existence de nappes de tourbillon en dimension deux, J. Amer. Math. Soc.4 (1991) 553-586. Zbl0780.35073MR1102579
- [8] Elliott C.M., Schätzle R., Stoth B.E.E., Viscosity solutions of a degenerate parabolic-elliptic system arising in the mean-field theory of superconductivity, Arch. Rational Mech. Anal.145 (1998) 99-127. Zbl0927.35117MR1664550
- [9] Evans L.C., Weak Convergence Methods for Nonlinear Partial Differential Equations, CBMS, vol. 74, Amer. Math. Soc., Providence, RI, 1990. Zbl0698.35004MR1034481
- [10] Jerrard R.L., Soner H.M., Dynamics of Ginzburg–Landau vortices, Arch. Rational Mech. Anal.142 (1998) 99-125. Zbl0923.35167MR1629646
- [11] Joly J.L., Métivier G., Rauch J., Focusing at a point and absorption of nonlinear oscillations, Trans. Amer. Math. Soc.347 (1995) 3921-3970. Zbl0857.35087MR1297533
- [12] Lin F., Some dynamical properties of Ginzburg–Landau vortices, Comm. Pure Appl. Math.51 (1998) 323-359. Zbl0853.35058MR1376654
- [13] Lin F., Zhang P., On the hydrodynamic limit of Ginzburg–Landau vortices, Discrete Contin. Dynam. Systems6 (2000) 121-142. Zbl1034.35128MR1739596
- [14] Lions P.L., Mathematical Topics in Fluid Mechanics, vol. 2, Compressible Models, Lecture Series in Mathematics and its Applications, vol. 6, Clarendon Press, Oxford, 1998. Zbl0908.76004MR1637634
- [15] Lions P.-L., Masmoudi N., Global solutions for some Oldroyd models of non-Newtonian flows, Chinese Ann. Math. Ser. B21 (2000) 131-146. Zbl0957.35109MR1763488
- [16] Schonbek M., Convergence of solutions to nonlinear dispersive equations, Comm. Partial Differential Equations7 (1982) 959-1000. Zbl0496.35058MR668586
- [17] Tartar L., Compensated compactness and applications to partial differential equations, in: Knops R.J. (Ed.), Nonlinear Analysis and Mechanics: Heriot–Watt Symposium, Research Notes in Math., vol. 39, Pitman, 1979. Zbl0437.35004MR584398
- [18] Vecchi I., Wu S., On -vorticity for 2-D incompressible flow, Manuscripta Math.78 (1993) 403-412. Zbl0807.35115MR1208650
- [19] Weinan E., Dynamics of vortex liquids in Ginsburg–Landau theories with application to superconductivity, Phys. Rev. B50 (1994) 1126-1135. Zbl0814.34039
- [20] Young L.C., Lectures on the Calculus of Variations and Optimal Control Theory, Saunders, Philadelphia, 1969. Zbl0177.37801MR259704
- [21] Yudovich V.I., Nonstationary flow of an ideal incompressible liquid, Zh. Vych. Math.3 (1963) 1032-1066, (in Russian). English translation, USSR Comput. Math. Phys.3 (1963) 1407-1456. Zbl0147.44303
- [22] Zhang P., Zheng Y., Existence and uniqueness of solutions to an asymptotic equation of a variational wave equation with general data, Arch. Rational Mech. Anal.155 (2000) 49-83. Zbl0982.35062MR1799274
- [23] Zhang P., Zheng Y., Rarefactive solutions to a nonlinear variational wave equation, Comm. Partial Differential Equations26 (2001) 381-420. Zbl0989.35112MR1842038
- [24] P. Zhang, Y. Zheng, Weak solutions to a nonlinear variational wave equation with general data, Ann. Inst. H. Poincaré Anal. Non Linéaire (2005), in press. Zbl1082.35129MR2124163
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.