A compactness theorem of n-harmonic maps

Chang You Wang

Annales de l'I.H.P. Analyse non linéaire (2005)

  • Volume: 22, Issue: 4, page 509-519
  • ISSN: 0294-1449

How to cite

top

Wang, Chang You. "A compactness theorem of n-harmonic maps." Annales de l'I.H.P. Analyse non linéaire 22.4 (2005): 509-519. <http://eudml.org/doc/78666>.

@article{Wang2005,
author = {Wang, Chang You},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Harmonic maps; Coulomb gauge frame; compensated-compactness},
language = {eng},
number = {4},
pages = {509-519},
publisher = {Elsevier},
title = {A compactness theorem of n-harmonic maps},
url = {http://eudml.org/doc/78666},
volume = {22},
year = {2005},
}

TY - JOUR
AU - Wang, Chang You
TI - A compactness theorem of n-harmonic maps
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2005
PB - Elsevier
VL - 22
IS - 4
SP - 509
EP - 519
LA - eng
KW - Harmonic maps; Coulomb gauge frame; compensated-compactness
UR - http://eudml.org/doc/78666
ER -

References

top
  1. [1] Bethuel F., Weak limits of Palais–Smale sequences for a class of critical functionals, Calc. Var. Partial Differential Equations1 (3) (1993) 267-310. Zbl0812.58018MR1261547
  2. [2] Bethuel F., On the singular set of stationary harmonic maps, Manuscripta Math.78 (1993) 417-443. Zbl0792.53039MR1208652
  3. [3] Chen Y.M., The weak solutions to the evolution problems of harmonic maps, Math. Z.201 (1) (1989) 69-74. Zbl0685.58015MR990189
  4. [4] Coifman R., Lions P., Meyer Y., Semmes S., Compensated compactness and Hardy spaces, J. Math. Pures Appl.72 (1993) 247-286. Zbl0864.42009MR1225511
  5. [5] Evans L.C., Partial regularity for stationary harmonic maps into spheres, Arch. Rational Mech. Anal.116 (1991) 101-113. Zbl0754.58007MR1143435
  6. [6] Evans L.C., Weak Convergence Methods for Nonlinear Partial Differential Equations, CBMS Regional Conf. Ser. in Math., vol. 74, 1990. Zbl0698.35004MR1034481
  7. [7] Evans L.C., Gariepy R., Measure Theory and Fine Properties of Functions, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1992. Zbl0804.28001MR1158660
  8. [8] Fefferman C., Stein E., H p spaces of several variables, Acta Math.129 (1972) 137-193. Zbl0257.46078MR447953
  9. [9] Freire A., Müller S., Struwe M., Weak convergence of wave maps from (1+2)-dimensional Minkowski space to Riemannian manifolds, Invent. Math.130 (3) (1997) 589-617. Zbl0906.35061MR1483995
  10. [10] Freire A., Müller S., Struwe M., Weak compactness of wave maps and harmonic maps, Ann. Inst. H. Poincaré Anal. Non Linéaire15 (6) (1998) 725-754. Zbl0924.58011MR1650966
  11. [11] Fuchs M., The blow-up of p-harmonic maps, Manuscripta Math.81 (1–2) (1993) 89-94. Zbl0794.58012MR1247590
  12. [12] Hélein F., Regularite des applications faiblement harmoniques entre une surface et variete riemannienne, C. R. Acad. Sci. Paris312 (1991) 591-596. Zbl0728.35015MR1101039
  13. [13] Hardt R., Lin F.H., Mappings minimizing the L p norm of the gradient, Comm. Pure Appl. Math.40 (5) (1987) 555-588. Zbl0646.49007MR896767
  14. [14] Hardt R., Lin F.H., Mou L., Strong convergence of p-harmonic mappings, in: Progress in Partial Differential Equations: The Metz Surveys, 3, Pitman Res. Notes Math. Ser., vol. 314, Longman Sci. Tech., Harlow, 1994, pp. 58-64. Zbl0833.35038MR1316190
  15. [15] Hélein F., Harmonic Maps, Conservation Laws and Moving Frames, Cambridge Tracts in Math., vol. 150, Cambridge Univ. Press, Cambridge, 2002. Zbl1010.58010MR1913803
  16. [16] Hungerbhler N., m-harmonic flow, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)24 (4) (1997) 593-631, (1998). Zbl0911.58011MR1627342
  17. [17] Iwaniec T., Martin G., Quasiregular mappings in even dimensions, Acta Math.170 (1) (1993) 29-81. Zbl0785.30008MR1208562
  18. [18] John F., Nirenberg L., On functions of bounded mean oscillation, Comm. Pure Appl. Math.14 (1961) 415-426. Zbl0102.04302MR131498
  19. [19] Lions P.L., The concentration-compactness principle in the calculus of variations: the limit case, I, Rev. Mat. Iberoamericana1 (1) (1985) 145-201. Zbl0704.49005MR834360
  20. [20] Lions P.L., The concentration-compactness principle in the calculus of variations: the limit case, II, Rev. Mat. Iberoamericana1 (2) (1985) 45-121. Zbl0704.49006MR850686
  21. [21] Luckhaus S., Convergence of minimizers for the p-Dirichlet integral, Math. Z.213 (3) (1993) 449-456. Zbl0798.58022MR1227492
  22. [22] Sacks J., Uhlenbeck K., The existence of minimal immersions of 2-spheres, Ann. of Math.113 (1981) 1-24. Zbl0462.58014MR604040
  23. [23] Schoen R., Uhlenbeck K., A regularity theory for harmonic maps, J. Differential Geom.17 (2) (1982) 307-335. Zbl0521.58021MR664498
  24. [24] Shatah J., Weak solutions and development of singularities of the SU 2 σ-model, Comm. Pure Appl. Math.41 (4) (1988) 459-469. Zbl0686.35081
  25. [25] Strzelecki P., Zatorska-Goldstein A., A compactness theorem for weak solutions of higher-dimensional H-systems, Duke Math. J.121 (2) (2004) 269-284. Zbl1054.58008MR2034643
  26. [26] Toro T., Wang C.Y., Compactness properties of weakly p-harmonic maps into homogeneous spaces, Indiana Univ. Math. J.44 (1) (1995) 87-113. Zbl0826.58014MR1336433
  27. [27] Uhlenbeck K., Connections with L p -bounds on curvature, Comm. Math. Phys.83 (1982) 31-42. Zbl0499.58019MR648356
  28. [28] Wang C.Y., Bubble phenomena of certain Palais–Smale sequences from surfaces to general targets, Houston J. Math.22 (3) (1996) 559-590. Zbl0879.58019MR1417632
  29. [29] Wang C.Y., Stationary biharmonic maps from R n into a Riemannian manifold, Comm. Pure Appl. Math.LVII (2004) 0419-0444. Zbl1055.58008MR2026177
  30. [30] Wang C.Y., Biharmonic maps from R 4 into a Riemannian manifold, Math. Z.247 (1) (2004) 65-87. Zbl1064.58016MR2054520

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.