A compactness theorem of n-harmonic maps
Annales de l'I.H.P. Analyse non linéaire (2005)
- Volume: 22, Issue: 4, page 509-519
- ISSN: 0294-1449
Access Full Article
topHow to cite
topWang, Chang You. "A compactness theorem of n-harmonic maps." Annales de l'I.H.P. Analyse non linéaire 22.4 (2005): 509-519. <http://eudml.org/doc/78666>.
@article{Wang2005,
author = {Wang, Chang You},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Harmonic maps; Coulomb gauge frame; compensated-compactness},
language = {eng},
number = {4},
pages = {509-519},
publisher = {Elsevier},
title = {A compactness theorem of n-harmonic maps},
url = {http://eudml.org/doc/78666},
volume = {22},
year = {2005},
}
TY - JOUR
AU - Wang, Chang You
TI - A compactness theorem of n-harmonic maps
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2005
PB - Elsevier
VL - 22
IS - 4
SP - 509
EP - 519
LA - eng
KW - Harmonic maps; Coulomb gauge frame; compensated-compactness
UR - http://eudml.org/doc/78666
ER -
References
top- [1] Bethuel F., Weak limits of Palais–Smale sequences for a class of critical functionals, Calc. Var. Partial Differential Equations1 (3) (1993) 267-310. Zbl0812.58018MR1261547
- [2] Bethuel F., On the singular set of stationary harmonic maps, Manuscripta Math.78 (1993) 417-443. Zbl0792.53039MR1208652
- [3] Chen Y.M., The weak solutions to the evolution problems of harmonic maps, Math. Z.201 (1) (1989) 69-74. Zbl0685.58015MR990189
- [4] Coifman R., Lions P., Meyer Y., Semmes S., Compensated compactness and Hardy spaces, J. Math. Pures Appl.72 (1993) 247-286. Zbl0864.42009MR1225511
- [5] Evans L.C., Partial regularity for stationary harmonic maps into spheres, Arch. Rational Mech. Anal.116 (1991) 101-113. Zbl0754.58007MR1143435
- [6] Evans L.C., Weak Convergence Methods for Nonlinear Partial Differential Equations, CBMS Regional Conf. Ser. in Math., vol. 74, 1990. Zbl0698.35004MR1034481
- [7] Evans L.C., Gariepy R., Measure Theory and Fine Properties of Functions, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1992. Zbl0804.28001MR1158660
- [8] Fefferman C., Stein E., spaces of several variables, Acta Math.129 (1972) 137-193. Zbl0257.46078MR447953
- [9] Freire A., Müller S., Struwe M., Weak convergence of wave maps from (1+2)-dimensional Minkowski space to Riemannian manifolds, Invent. Math.130 (3) (1997) 589-617. Zbl0906.35061MR1483995
- [10] Freire A., Müller S., Struwe M., Weak compactness of wave maps and harmonic maps, Ann. Inst. H. Poincaré Anal. Non Linéaire15 (6) (1998) 725-754. Zbl0924.58011MR1650966
- [11] Fuchs M., The blow-up of p-harmonic maps, Manuscripta Math.81 (1–2) (1993) 89-94. Zbl0794.58012MR1247590
- [12] Hélein F., Regularite des applications faiblement harmoniques entre une surface et variete riemannienne, C. R. Acad. Sci. Paris312 (1991) 591-596. Zbl0728.35015MR1101039
- [13] Hardt R., Lin F.H., Mappings minimizing the norm of the gradient, Comm. Pure Appl. Math.40 (5) (1987) 555-588. Zbl0646.49007MR896767
- [14] Hardt R., Lin F.H., Mou L., Strong convergence of p-harmonic mappings, in: Progress in Partial Differential Equations: The Metz Surveys, 3, Pitman Res. Notes Math. Ser., vol. 314, Longman Sci. Tech., Harlow, 1994, pp. 58-64. Zbl0833.35038MR1316190
- [15] Hélein F., Harmonic Maps, Conservation Laws and Moving Frames, Cambridge Tracts in Math., vol. 150, Cambridge Univ. Press, Cambridge, 2002. Zbl1010.58010MR1913803
- [16] Hungerbhler N., m-harmonic flow, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)24 (4) (1997) 593-631, (1998). Zbl0911.58011MR1627342
- [17] Iwaniec T., Martin G., Quasiregular mappings in even dimensions, Acta Math.170 (1) (1993) 29-81. Zbl0785.30008MR1208562
- [18] John F., Nirenberg L., On functions of bounded mean oscillation, Comm. Pure Appl. Math.14 (1961) 415-426. Zbl0102.04302MR131498
- [19] Lions P.L., The concentration-compactness principle in the calculus of variations: the limit case, I, Rev. Mat. Iberoamericana1 (1) (1985) 145-201. Zbl0704.49005MR834360
- [20] Lions P.L., The concentration-compactness principle in the calculus of variations: the limit case, II, Rev. Mat. Iberoamericana1 (2) (1985) 45-121. Zbl0704.49006MR850686
- [21] Luckhaus S., Convergence of minimizers for the p-Dirichlet integral, Math. Z.213 (3) (1993) 449-456. Zbl0798.58022MR1227492
- [22] Sacks J., Uhlenbeck K., The existence of minimal immersions of 2-spheres, Ann. of Math.113 (1981) 1-24. Zbl0462.58014MR604040
- [23] Schoen R., Uhlenbeck K., A regularity theory for harmonic maps, J. Differential Geom.17 (2) (1982) 307-335. Zbl0521.58021MR664498
- [24] Shatah J., Weak solutions and development of singularities of the σ-model, Comm. Pure Appl. Math.41 (4) (1988) 459-469. Zbl0686.35081
- [25] Strzelecki P., Zatorska-Goldstein A., A compactness theorem for weak solutions of higher-dimensional H-systems, Duke Math. J.121 (2) (2004) 269-284. Zbl1054.58008MR2034643
- [26] Toro T., Wang C.Y., Compactness properties of weakly p-harmonic maps into homogeneous spaces, Indiana Univ. Math. J.44 (1) (1995) 87-113. Zbl0826.58014MR1336433
- [27] Uhlenbeck K., Connections with -bounds on curvature, Comm. Math. Phys.83 (1982) 31-42. Zbl0499.58019MR648356
- [28] Wang C.Y., Bubble phenomena of certain Palais–Smale sequences from surfaces to general targets, Houston J. Math.22 (3) (1996) 559-590. Zbl0879.58019MR1417632
- [29] Wang C.Y., Stationary biharmonic maps from into a Riemannian manifold, Comm. Pure Appl. Math.LVII (2004) 0419-0444. Zbl1055.58008MR2026177
- [30] Wang C.Y., Biharmonic maps from into a Riemannian manifold, Math. Z.247 (1) (2004) 65-87. Zbl1064.58016MR2054520
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.