Random perturbations and statistical properties of Hénon-like maps
Michael Benedicks; Marcelo Viana
Annales de l'I.H.P. Analyse non linéaire (2006)
- Volume: 23, Issue: 5, page 713-752
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBenedicks, Michael, and Viana, Marcelo. "Random perturbations and statistical properties of Hénon-like maps." Annales de l'I.H.P. Analyse non linéaire 23.5 (2006): 713-752. <http://eudml.org/doc/78709>.
@article{Benedicks2006,
author = {Benedicks, Michael, Viana, Marcelo},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {dynamics; non-uniform hyperbolic; strange attractor; random perturbation; Hénon map},
language = {eng},
number = {5},
pages = {713-752},
publisher = {Elsevier},
title = {Random perturbations and statistical properties of Hénon-like maps},
url = {http://eudml.org/doc/78709},
volume = {23},
year = {2006},
}
TY - JOUR
AU - Benedicks, Michael
AU - Viana, Marcelo
TI - Random perturbations and statistical properties of Hénon-like maps
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 5
SP - 713
EP - 752
LA - eng
KW - dynamics; non-uniform hyperbolic; strange attractor; random perturbation; Hénon map
UR - http://eudml.org/doc/78709
ER -
References
top- [1] J.F. Alves, V. Araújo, Stochastic stability for robust classes of non-uniformly expanding maps, Astérisque.
- [2] Andronov A., Pontryagin L., Systèmes grossiers, Dokl. Akad. Nauk USSR14 (1937) 247-251. Zbl0016.11301
- [3] Araújo V., Attractors and time averages for random maps, Ann. Inst. H. Poincaré Anal. Non Linéaire17 (2000) 307-369. Zbl0974.37036MR1771137
- [4] Arnold L., Random Dynamical Systems, Springer-Verlag, 1998. Zbl0834.58026MR1723992
- [5] A. Avila, C.G. Moreira, Statistical properties of unimodal maps: smooth families with negative Schwarzian derivative, Astérisque. Zbl1046.37021MR2052298
- [6] Baladi V., Viana M., Strong stochastic stability and rate of mixing for unimodal maps, Ann. Sci. École Norm. Sup.29 (1996) 483-517. Zbl0868.58051MR1386223
- [7] Benedicks M., Carleson L., The dynamics of the Hénon map, Ann. of Math.133 (1991) 73-169. Zbl0724.58042MR1087346
- [8] Benedicks M., Viana M., Solution of the basin problem for Hénon-like attractors, Invent. Math.143 (2001) 375-434. Zbl0967.37023MR1835392
- [9] Benedicks M., Young L.-S., Absolutely continuous invariant measures and random perturbations for certain one-dimensional maps, Ergodic Theory Dynam. Systems12 (1992) 13-37. Zbl0769.58051MR1162396
- [10] Benedicks M., Young L.-S., SBR-measures for certain Hénon maps, Invent. Math.112 (1993) 541-576. Zbl0796.58025MR1218323
- [11] Benedicks M., Young L.-S., Markov extensions and decay of correlations for certain Hénon maps, Astérisque261 (2000) 13-56. Zbl1044.37013MR1755436
- [12] P. Collet, Ergodic properties of some unimodal mappings of the interval, Technical report, Institute Mittag-Leffler, 1984.
- [13] de Melo W., van Strien S., One-Dimensional Dynamics, Springer-Verlag, 1993. Zbl0791.58003MR1239171
- [14] Díaz L.J., Rocha J., Viana M., Strange attractors in saddle-node cycles: prevalence and globality, Invent. Math.125 (1996) 37-74. Zbl0865.58034MR1389960
- [15] Hayashi S., Connecting invariant manifolds and the solution of the stability andΩ-stability conjectures for flows, Ann. of Math.145 (1997) 81-137. Zbl0871.58067
- [16] Katok A., Kifer Yu., Random perturbations of transformations of an interval, J. Anal. Math.47 (1986) 193-237. Zbl0616.60064MR874051
- [17] Keller G., Stochastic stability in some chaotic dynamical systems, Monatsh. Math.94 (1982) 313-333. Zbl0496.58010MR685377
- [18] Kifer Yu., Ergodic Theory of Random Perturbations, Birkhäuser, 1986. MR884892
- [19] Kifer Yu., Random Perturbations of Dynamical Systems, Birkhäuser, 1988. Zbl0659.58003MR1015933
- [20] Mañé R., A proof of the stability conjecture, Publ. Math. I.H.E.S.66 (1988) 161-210. Zbl0678.58022MR932138
- [21] Metzger R., Stochastic stability for contracting Lorenz maps, Comm. Math. Phys.212 (2000) 277-296. Zbl1052.37018MR1772247
- [22] Mora L., Viana M., Abundance of strange attractors, Acta Math.171 (1993) 1-71. Zbl0815.58016MR1237897
- [23] Palis J., Smale S., Structural stability theorems, in: Global Analysis, Berkeley, 1968, Proc. Sympos. Pure Math., vol. XIV, Amer. Math. Soc., 1970, pp. 223-232. Zbl0214.50702MR267603
- [24] Palis J., Takens F., Hyperbolicity and Sensitive-Chaotic Dynamics at Homoclinic Bifurcations, Cambridge University Press, 1993. Zbl0790.58014MR1237641
- [25] Pesin Ya., Families of invariant manifolds corresponding to non-zero characteristic exponents, Math. USSR Izv.10 (1976) 1261-1302. Zbl0383.58012
- [26] Pugh C., Shub M., Ergodic attractors, Trans. Amer. Math. Soc.312 (1989) 1-54. Zbl0684.58008MR983869
- [27] Robbin J., A structural stability theorem, Ann. of Math.94 (1971) 447-493. Zbl0224.58005MR287580
- [28] Robinson C., Structural stability of vector fields, Ann. of Math.99 (1974) 154-175, Errata, Ann. of Math.101 (1975) 368. Zbl0275.58012MR334283
- [29] Rokhlin V.A., On the fundamental ideas of measure theory, Amer. Math. Soc. Transl.10 (1962) 1-52, Transl. from, Mat. Sb.25 (1949) 107-150. Zbl0174.45501MR30584
- [30] Rudin W., Real and Complex Analysis, McGraw-Hill, 1987. Zbl0925.00005MR924157
- [31] Sinai Ya., Gibbs measures in ergodic theory, Russian Math. Surveys27 (1972) 21-69. Zbl0255.28016MR399421
- [32] Thieullen Ph., Tresser C., Young L.-S., Positive Lyapunov exponent for generic one-parameter families of unimodal maps, J. Anal. Math.64 (1994) 121-172. Zbl0821.58015MR1303510
- [33] Wang Q., Young L.-S., Strange attractors with one direction of instability, Comm. Math. Phys.218 (2001) 1-97. Zbl0996.37040MR1824198
- [34] Young L.-S., Stochastic stability of hyperbolic attractors, Ergodic Theory Dynam. Systems6 (1986) 311-319. Zbl0633.58023MR857204
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.