Random perturbations and statistical properties of Hénon-like maps

Michael Benedicks; Marcelo Viana

Annales de l'I.H.P. Analyse non linéaire (2006)

  • Volume: 23, Issue: 5, page 713-752
  • ISSN: 0294-1449

How to cite

top

Benedicks, Michael, and Viana, Marcelo. "Random perturbations and statistical properties of Hénon-like maps." Annales de l'I.H.P. Analyse non linéaire 23.5 (2006): 713-752. <http://eudml.org/doc/78709>.

@article{Benedicks2006,
author = {Benedicks, Michael, Viana, Marcelo},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {dynamics; non-uniform hyperbolic; strange attractor; random perturbation; Hénon map},
language = {eng},
number = {5},
pages = {713-752},
publisher = {Elsevier},
title = {Random perturbations and statistical properties of Hénon-like maps},
url = {http://eudml.org/doc/78709},
volume = {23},
year = {2006},
}

TY - JOUR
AU - Benedicks, Michael
AU - Viana, Marcelo
TI - Random perturbations and statistical properties of Hénon-like maps
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 5
SP - 713
EP - 752
LA - eng
KW - dynamics; non-uniform hyperbolic; strange attractor; random perturbation; Hénon map
UR - http://eudml.org/doc/78709
ER -

References

top
  1. [1] J.F. Alves, V. Araújo, Stochastic stability for robust classes of non-uniformly expanding maps, Astérisque. 
  2. [2] Andronov A., Pontryagin L., Systèmes grossiers, Dokl. Akad. Nauk USSR14 (1937) 247-251. Zbl0016.11301
  3. [3] Araújo V., Attractors and time averages for random maps, Ann. Inst. H. Poincaré Anal. Non Linéaire17 (2000) 307-369. Zbl0974.37036MR1771137
  4. [4] Arnold L., Random Dynamical Systems, Springer-Verlag, 1998. Zbl0834.58026MR1723992
  5. [5] A. Avila, C.G. Moreira, Statistical properties of unimodal maps: smooth families with negative Schwarzian derivative, Astérisque. Zbl1046.37021MR2052298
  6. [6] Baladi V., Viana M., Strong stochastic stability and rate of mixing for unimodal maps, Ann. Sci. École Norm. Sup.29 (1996) 483-517. Zbl0868.58051MR1386223
  7. [7] Benedicks M., Carleson L., The dynamics of the Hénon map, Ann. of Math.133 (1991) 73-169. Zbl0724.58042MR1087346
  8. [8] Benedicks M., Viana M., Solution of the basin problem for Hénon-like attractors, Invent. Math.143 (2001) 375-434. Zbl0967.37023MR1835392
  9. [9] Benedicks M., Young L.-S., Absolutely continuous invariant measures and random perturbations for certain one-dimensional maps, Ergodic Theory Dynam. Systems12 (1992) 13-37. Zbl0769.58051MR1162396
  10. [10] Benedicks M., Young L.-S., SBR-measures for certain Hénon maps, Invent. Math.112 (1993) 541-576. Zbl0796.58025MR1218323
  11. [11] Benedicks M., Young L.-S., Markov extensions and decay of correlations for certain Hénon maps, Astérisque261 (2000) 13-56. Zbl1044.37013MR1755436
  12. [12] P. Collet, Ergodic properties of some unimodal mappings of the interval, Technical report, Institute Mittag-Leffler, 1984. 
  13. [13] de Melo W., van Strien S., One-Dimensional Dynamics, Springer-Verlag, 1993. Zbl0791.58003MR1239171
  14. [14] Díaz L.J., Rocha J., Viana M., Strange attractors in saddle-node cycles: prevalence and globality, Invent. Math.125 (1996) 37-74. Zbl0865.58034MR1389960
  15. [15] Hayashi S., Connecting invariant manifolds and the solution of the C 1 stability andΩ-stability conjectures for flows, Ann. of Math.145 (1997) 81-137. Zbl0871.58067
  16. [16] Katok A., Kifer Yu., Random perturbations of transformations of an interval, J. Anal. Math.47 (1986) 193-237. Zbl0616.60064MR874051
  17. [17] Keller G., Stochastic stability in some chaotic dynamical systems, Monatsh. Math.94 (1982) 313-333. Zbl0496.58010MR685377
  18. [18] Kifer Yu., Ergodic Theory of Random Perturbations, Birkhäuser, 1986. MR884892
  19. [19] Kifer Yu., Random Perturbations of Dynamical Systems, Birkhäuser, 1988. Zbl0659.58003MR1015933
  20. [20] Mañé R., A proof of the C 1 stability conjecture, Publ. Math. I.H.E.S.66 (1988) 161-210. Zbl0678.58022MR932138
  21. [21] Metzger R., Stochastic stability for contracting Lorenz maps, Comm. Math. Phys.212 (2000) 277-296. Zbl1052.37018MR1772247
  22. [22] Mora L., Viana M., Abundance of strange attractors, Acta Math.171 (1993) 1-71. Zbl0815.58016MR1237897
  23. [23] Palis J., Smale S., Structural stability theorems, in: Global Analysis, Berkeley, 1968, Proc. Sympos. Pure Math., vol. XIV, Amer. Math. Soc., 1970, pp. 223-232. Zbl0214.50702MR267603
  24. [24] Palis J., Takens F., Hyperbolicity and Sensitive-Chaotic Dynamics at Homoclinic Bifurcations, Cambridge University Press, 1993. Zbl0790.58014MR1237641
  25. [25] Pesin Ya., Families of invariant manifolds corresponding to non-zero characteristic exponents, Math. USSR Izv.10 (1976) 1261-1302. Zbl0383.58012
  26. [26] Pugh C., Shub M., Ergodic attractors, Trans. Amer. Math. Soc.312 (1989) 1-54. Zbl0684.58008MR983869
  27. [27] Robbin J., A structural stability theorem, Ann. of Math.94 (1971) 447-493. Zbl0224.58005MR287580
  28. [28] Robinson C., Structural stability of vector fields, Ann. of Math.99 (1974) 154-175, Errata, Ann. of Math.101 (1975) 368. Zbl0275.58012MR334283
  29. [29] Rokhlin V.A., On the fundamental ideas of measure theory, Amer. Math. Soc. Transl.10 (1962) 1-52, Transl. from, Mat. Sb.25 (1949) 107-150. Zbl0174.45501MR30584
  30. [30] Rudin W., Real and Complex Analysis, McGraw-Hill, 1987. Zbl0925.00005MR924157
  31. [31] Sinai Ya., Gibbs measures in ergodic theory, Russian Math. Surveys27 (1972) 21-69. Zbl0255.28016MR399421
  32. [32] Thieullen Ph., Tresser C., Young L.-S., Positive Lyapunov exponent for generic one-parameter families of unimodal maps, J. Anal. Math.64 (1994) 121-172. Zbl0821.58015MR1303510
  33. [33] Wang Q., Young L.-S., Strange attractors with one direction of instability, Comm. Math. Phys.218 (2001) 1-97. Zbl0996.37040MR1824198
  34. [34] Young L.-S., Stochastic stability of hyperbolic attractors, Ergodic Theory Dynam. Systems6 (1986) 311-319. Zbl0633.58023MR857204

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.