On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials

Thomas Duyckaerts; Xu Zhang; Enrique Zuazua

Annales de l'I.H.P. Analyse non linéaire (2008)

  • Volume: 25, Issue: 1, page 1-41
  • ISSN: 0294-1449

How to cite

top

Duyckaerts, Thomas, Zhang, Xu, and Zuazua, Enrique. "On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials." Annales de l'I.H.P. Analyse non linéaire 25.1 (2008): 1-41. <http://eudml.org/doc/78781>.

@article{Duyckaerts2008,
author = {Duyckaerts, Thomas, Zhang, Xu, Zuazua, Enrique},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {optimality; Meshkov's construction; observability inequality; heat equation; wave equation; potential; Carleman inequality; decay at infinity},
language = {eng},
number = {1},
pages = {1-41},
publisher = {Elsevier},
title = {On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials},
url = {http://eudml.org/doc/78781},
volume = {25},
year = {2008},
}

TY - JOUR
AU - Duyckaerts, Thomas
AU - Zhang, Xu
AU - Zuazua, Enrique
TI - On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 1
SP - 1
EP - 41
LA - eng
KW - optimality; Meshkov's construction; observability inequality; heat equation; wave equation; potential; Carleman inequality; decay at infinity
UR - http://eudml.org/doc/78781
ER -

References

top
  1. [1] Agmon S., Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations: Bounds on Eigenfunctions of N-Body Schrödinger Operators, Princeton Univ. Press, Princeton, NJ, 1982. Zbl0503.35001MR745286
  2. [2] Alinhac S., Baouendi M.S., A nonuniqueness result for operators of principal type, Math. Z.220 (1995) 561-568. Zbl0851.35003MR1363855
  3. [3] Alinhac S., Lerner N., Unicité forte à partir d'une variété de dimension quelconque pour des inégalités différentielles elliptiques, Duke Math. J.48 (1981) 49-68. Zbl0459.35095MR610175
  4. [4] Alziary B., Takáč P., A pointwise lower bound for positive solutions of a Schrödinger equation in R N , J. Differential Equations133 (1997) 280-295. Zbl0874.35030MR1427854
  5. [5] Bardos C., Lebeau G., Rauch J., Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary, SIAM J. Control Optim.30 (1992) 1024-1065. Zbl0786.93009MR1178650
  6. [6] Bardos C., Merigot M., Asymptotic decay of the solution of a second-order elliptic equation in an unbounded domain. Applications to the spectral properties of a Hamiltonian, Proc. Roy. Soc. Edinburgh Sect. A76 (1977) 323-344. Zbl0351.35009MR477432
  7. [7] Cannarsa P., Komornik V., Loreti P., One-sided and internal controllability of semilinear wave equations with infinitely iterated logarithms, Discrete Contin. Dyn. Syst. B8 (2002) 745-756. Zbl1005.35017MR1897879
  8. [8] Castro C., Zuazua E., Concentration and lack of observability of waves in highly heterogeneous media, Arch. Ration. Mech. Anal.164 (2002) 39-72. Zbl1016.35003MR1921162
  9. [9] Doubova A., Fernández-Cara E., González-Burgos M., Zuazua E., On the controllability of parabolic systems with a nonlinear term involving the state and the gradient, SIAM J. Control Optim.41 (2002) 798-819. Zbl1038.93041MR1939871
  10. [10] Fattorini H.O., Estimates for sequences biorthogonal to certain complex exponentials and boundary control of the wave equation, in: New Trends in Systems Analysis, Proc. Internat. Sympos., Versailles, 1976, Lecture Notes in Control and Inform. Sci., vol. 2, Springer, Berlin, 1977, pp. 111-124. Zbl0379.93030MR490213
  11. [11] Fernández-Cara E., Zuazua E., The cost of approximate controllability for heat equations: the linear case, Adv. Differential Equations5 (2000) 465-514. Zbl1007.93034MR1750109
  12. [12] Fernández-Cara E., Zuazua E., Null and approximate controllability for weakly blowing-up semilinear heat equations, Ann. Inst. H. Poincaré Anal. Non Linéaire17 (2000) 583-616. Zbl0970.93023MR1791879
  13. [13] Fursikov A.V., Imanuvilov O.Yu., Controllability of Evolution Equations, Lecture Notes Series, vol. 34, Research Institute of Mathematics, Seoul National University, Seoul, Korea, 1994. Zbl0862.49004MR1406566
  14. [14] X. Fu, J. Yong, X. Zhang, Exact controllability for multidimensional semilinear equations, Preprint, 2004. 
  15. [15] Hörmander L., Non-uniqueness for the Cauchy problem, in: Chazarain J. (Ed.), Fourier Integral Operators and Partial Differential Equations, Colloque International, Nice, Lecture Notes in Mathematics, vol. 459, Springer-Verlag, Berlin, 1974, pp. 36-72. Zbl0315.35019MR419980
  16. [16] Imanuvilov O.Yu., On Carleman estimates for hyperbolic equations, Asymptotic Anal.32 (2002) 185-220. Zbl1050.35046MR1993649
  17. [17] Lions J.L., Contrôlabilité exacte, stabilisation et perturbations de systèmes distribués, Tomes 1 & 2, RMA, vols. 8–9, Masson, Paris, 1988. Zbl0653.93003MR963060
  18. [18] Meshkov V.Z., On the possible rate of decrease at infinity of the solutions of second-order partial differential equations, Mat. Sb.182 (1991) 364-383, (in Russian); Translation in, Math. USSR-Sb.72 (1992) 343-361. Zbl0782.35010MR1110071
  19. [19] Miller L., Geometric bounds on the growth rate of null-controllability cost of the heat equation in small time, J. Differential Equations204 (2004) 202-226. Zbl1053.93010MR2076164
  20. [20] Rosier L., Exact boundary controllability for the Korteweg–de Vries equation on a bounded domain, ESAIM: Control Optim. Calc. Var.2 (1997) 33-55. Zbl0873.93008MR1440078
  21. [21] Russell D.L., A unified boundary controllability theory for hyperbolic and parabolic partial differential equations, Stud. Appl. Math.52 (1973) 189-221. Zbl0274.35041MR341256
  22. [22] Seidman T., Avdonin S., Ivanov S.A., The “window problem” for series of complex exponentials, J. Fourier Anal. Appl.6 (2000) 233-254. Zbl0960.42012MR1755142
  23. [23] Strauss W.A., Partial Differential Equations, Wiley, New York, 1992. Zbl0817.35001MR1159712
  24. [24] Uchiyama J., Lower bounds of decay order of eigenfunctions of second-order elliptic operators, Publ. Res. Inst. Math. Sci.21 (1985) 1281-1297. Zbl0616.35070MR842419
  25. [25] Whittaker E.T., Watson G.N., A Course of Modern Analysis, Reprint of the fourth edition 1927, Cambridge Univ. Press, Cambridge, 1996. Zbl0951.30002MR1424469JFM53.0180.04
  26. [26] Wolff T., A counterexample in a unique continuation problem, Comm. Anal. Geom.2 (1994) 79-102. Zbl0836.35023MR1312679
  27. [27] Zhang X., Exact controllability of semilinear plate equations, Asymptotic Anal.27 (2001) 95-125. Zbl1007.35008MR1852002
  28. [28] Zhang X., Zuazua E., Exact controllability of the semi-linear wave equation, in: Blondel V.D., Megretski A. (Eds.), Sixty Open Problems in the Mathematics of Systems and Control, Princeton University Press, 2004, pp. 173-178. 
  29. [29] Zuazua E., Exact controllability for semilinear wave equations in one space dimension, Ann. Inst. H. Poincaré Anal. Non Linéaire10 (1993) 109-129. Zbl0769.93017MR1212631
  30. [30] Zuazua E., Remarks on the controllability of the Schrödinger equation, in: Bandrauk A., Delfour M.C., Le Bris C. (Eds.), Quantum Control: Mathematical and Numerical Challenges, CRM Proc. Lecture Notes, vol. 33, Amer. Math. Soc., Providence, RI, 2003, pp. 181-199. MR2043529
  31. [31] Zuily C., Uniqueness and Nonuniqueness in the Cauchy Problem, Progress in Mathematics, vol. 33, Birkhäuser Boston, Boston, MA, 1983. Zbl0521.35003MR701544

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.