On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials
Thomas Duyckaerts; Xu Zhang; Enrique Zuazua
Annales de l'I.H.P. Analyse non linéaire (2008)
- Volume: 25, Issue: 1, page 1-41
- ISSN: 0294-1449
Access Full Article
topHow to cite
topDuyckaerts, Thomas, Zhang, Xu, and Zuazua, Enrique. "On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials." Annales de l'I.H.P. Analyse non linéaire 25.1 (2008): 1-41. <http://eudml.org/doc/78781>.
@article{Duyckaerts2008,
author = {Duyckaerts, Thomas, Zhang, Xu, Zuazua, Enrique},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {optimality; Meshkov's construction; observability inequality; heat equation; wave equation; potential; Carleman inequality; decay at infinity},
language = {eng},
number = {1},
pages = {1-41},
publisher = {Elsevier},
title = {On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials},
url = {http://eudml.org/doc/78781},
volume = {25},
year = {2008},
}
TY - JOUR
AU - Duyckaerts, Thomas
AU - Zhang, Xu
AU - Zuazua, Enrique
TI - On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 1
SP - 1
EP - 41
LA - eng
KW - optimality; Meshkov's construction; observability inequality; heat equation; wave equation; potential; Carleman inequality; decay at infinity
UR - http://eudml.org/doc/78781
ER -
References
top- [1] Agmon S., Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations: Bounds on Eigenfunctions of N-Body Schrödinger Operators, Princeton Univ. Press, Princeton, NJ, 1982. Zbl0503.35001MR745286
- [2] Alinhac S., Baouendi M.S., A nonuniqueness result for operators of principal type, Math. Z.220 (1995) 561-568. Zbl0851.35003MR1363855
- [3] Alinhac S., Lerner N., Unicité forte à partir d'une variété de dimension quelconque pour des inégalités différentielles elliptiques, Duke Math. J.48 (1981) 49-68. Zbl0459.35095MR610175
- [4] Alziary B., Takáč P., A pointwise lower bound for positive solutions of a Schrödinger equation in , J. Differential Equations133 (1997) 280-295. Zbl0874.35030MR1427854
- [5] Bardos C., Lebeau G., Rauch J., Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary, SIAM J. Control Optim.30 (1992) 1024-1065. Zbl0786.93009MR1178650
- [6] Bardos C., Merigot M., Asymptotic decay of the solution of a second-order elliptic equation in an unbounded domain. Applications to the spectral properties of a Hamiltonian, Proc. Roy. Soc. Edinburgh Sect. A76 (1977) 323-344. Zbl0351.35009MR477432
- [7] Cannarsa P., Komornik V., Loreti P., One-sided and internal controllability of semilinear wave equations with infinitely iterated logarithms, Discrete Contin. Dyn. Syst. B8 (2002) 745-756. Zbl1005.35017MR1897879
- [8] Castro C., Zuazua E., Concentration and lack of observability of waves in highly heterogeneous media, Arch. Ration. Mech. Anal.164 (2002) 39-72. Zbl1016.35003MR1921162
- [9] Doubova A., Fernández-Cara E., González-Burgos M., Zuazua E., On the controllability of parabolic systems with a nonlinear term involving the state and the gradient, SIAM J. Control Optim.41 (2002) 798-819. Zbl1038.93041MR1939871
- [10] Fattorini H.O., Estimates for sequences biorthogonal to certain complex exponentials and boundary control of the wave equation, in: New Trends in Systems Analysis, Proc. Internat. Sympos., Versailles, 1976, Lecture Notes in Control and Inform. Sci., vol. 2, Springer, Berlin, 1977, pp. 111-124. Zbl0379.93030MR490213
- [11] Fernández-Cara E., Zuazua E., The cost of approximate controllability for heat equations: the linear case, Adv. Differential Equations5 (2000) 465-514. Zbl1007.93034MR1750109
- [12] Fernández-Cara E., Zuazua E., Null and approximate controllability for weakly blowing-up semilinear heat equations, Ann. Inst. H. Poincaré Anal. Non Linéaire17 (2000) 583-616. Zbl0970.93023MR1791879
- [13] Fursikov A.V., Imanuvilov O.Yu., Controllability of Evolution Equations, Lecture Notes Series, vol. 34, Research Institute of Mathematics, Seoul National University, Seoul, Korea, 1994. Zbl0862.49004MR1406566
- [14] X. Fu, J. Yong, X. Zhang, Exact controllability for multidimensional semilinear equations, Preprint, 2004.
- [15] Hörmander L., Non-uniqueness for the Cauchy problem, in: Chazarain J. (Ed.), Fourier Integral Operators and Partial Differential Equations, Colloque International, Nice, Lecture Notes in Mathematics, vol. 459, Springer-Verlag, Berlin, 1974, pp. 36-72. Zbl0315.35019MR419980
- [16] Imanuvilov O.Yu., On Carleman estimates for hyperbolic equations, Asymptotic Anal.32 (2002) 185-220. Zbl1050.35046MR1993649
- [17] Lions J.L., Contrôlabilité exacte, stabilisation et perturbations de systèmes distribués, Tomes 1 & 2, RMA, vols. 8–9, Masson, Paris, 1988. Zbl0653.93003MR963060
- [18] Meshkov V.Z., On the possible rate of decrease at infinity of the solutions of second-order partial differential equations, Mat. Sb.182 (1991) 364-383, (in Russian); Translation in, Math. USSR-Sb.72 (1992) 343-361. Zbl0782.35010MR1110071
- [19] Miller L., Geometric bounds on the growth rate of null-controllability cost of the heat equation in small time, J. Differential Equations204 (2004) 202-226. Zbl1053.93010MR2076164
- [20] Rosier L., Exact boundary controllability for the Korteweg–de Vries equation on a bounded domain, ESAIM: Control Optim. Calc. Var.2 (1997) 33-55. Zbl0873.93008MR1440078
- [21] Russell D.L., A unified boundary controllability theory for hyperbolic and parabolic partial differential equations, Stud. Appl. Math.52 (1973) 189-221. Zbl0274.35041MR341256
- [22] Seidman T., Avdonin S., Ivanov S.A., The “window problem” for series of complex exponentials, J. Fourier Anal. Appl.6 (2000) 233-254. Zbl0960.42012MR1755142
- [23] Strauss W.A., Partial Differential Equations, Wiley, New York, 1992. Zbl0817.35001MR1159712
- [24] Uchiyama J., Lower bounds of decay order of eigenfunctions of second-order elliptic operators, Publ. Res. Inst. Math. Sci.21 (1985) 1281-1297. Zbl0616.35070MR842419
- [25] Whittaker E.T., Watson G.N., A Course of Modern Analysis, Reprint of the fourth edition 1927, Cambridge Univ. Press, Cambridge, 1996. Zbl0951.30002MR1424469JFM53.0180.04
- [26] Wolff T., A counterexample in a unique continuation problem, Comm. Anal. Geom.2 (1994) 79-102. Zbl0836.35023MR1312679
- [27] Zhang X., Exact controllability of semilinear plate equations, Asymptotic Anal.27 (2001) 95-125. Zbl1007.35008MR1852002
- [28] Zhang X., Zuazua E., Exact controllability of the semi-linear wave equation, in: Blondel V.D., Megretski A. (Eds.), Sixty Open Problems in the Mathematics of Systems and Control, Princeton University Press, 2004, pp. 173-178.
- [29] Zuazua E., Exact controllability for semilinear wave equations in one space dimension, Ann. Inst. H. Poincaré Anal. Non Linéaire10 (1993) 109-129. Zbl0769.93017MR1212631
- [30] Zuazua E., Remarks on the controllability of the Schrödinger equation, in: Bandrauk A., Delfour M.C., Le Bris C. (Eds.), Quantum Control: Mathematical and Numerical Challenges, CRM Proc. Lecture Notes, vol. 33, Amer. Math. Soc., Providence, RI, 2003, pp. 181-199. MR2043529
- [31] Zuily C., Uniqueness and Nonuniqueness in the Cauchy Problem, Progress in Mathematics, vol. 33, Birkhäuser Boston, Boston, MA, 1983. Zbl0521.35003MR701544
Citations in EuDML Documents
top- K. Beauchard, E. Zuazua, Some controllability results for the 2D Kolmogorov equation
- Leila Ouksel, Inégalité d'observabilité du type logarithmique et estimation de la fonction de coût des solutions des équations hyperboliques
- Karine Beauchard, Null controllability of degenerate parabolic equations of Grushin and Kolmogorov type
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.