Local exact lagrangian controllability of the Burgers viscous equation
Annales de l'I.H.P. Analyse non linéaire (2008)
- Volume: 25, Issue: 2, page 219-230
- ISSN: 0294-1449
Access Full Article
topHow to cite
topHorsin, Thierry. "Local exact lagrangian controllability of the Burgers viscous equation." Annales de l'I.H.P. Analyse non linéaire 25.2 (2008): 219-230. <http://eudml.org/doc/78786>.
@article{Horsin2008,
author = {Horsin, Thierry},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {controllability; boundary control; Lagrangian description; Burgers equation; evolution equation},
language = {eng},
number = {2},
pages = {219-230},
publisher = {Elsevier},
title = {Local exact lagrangian controllability of the Burgers viscous equation},
url = {http://eudml.org/doc/78786},
volume = {25},
year = {2008},
}
TY - JOUR
AU - Horsin, Thierry
TI - Local exact lagrangian controllability of the Burgers viscous equation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 2
SP - 219
EP - 230
LA - eng
KW - controllability; boundary control; Lagrangian description; Burgers equation; evolution equation
UR - http://eudml.org/doc/78786
ER -
References
top- [1] Ancona F., Marson A., On the attainable set for scalar nonlinear conservation laws with boundary control, SIAM J. Control Optim.36 (1) (1998) 290-312. Zbl0919.35082MR1616586
- [2] Boulakia M., Osses A., Two-dimensional local null controllability of a rigid structure in a Navier–Stokes fluid, C. R. Acad. Sci. Paris, Ser. I343 (2) (2006) 105-109. Zbl1099.93006MR2242041
- [3] H. Brezis, T. Cazenave, Semilinear Evolution Equations and Applications in Mechanics and Physics, Pitman Lecture Notes, Addison-Wesley, Reading MA, in press.
- [4] Coddington E.A., Levinson N., Theory of Ordinary Differential Equations, McGraw-Hill Book Company, New York, 1955. Zbl0064.33002MR69338
- [5] Conca C., San Martin J., Tucsnak M., Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid, Comm. Partial Differential Equations25 (5–6) (2000) 1019-1042. Zbl0954.35135MR1759801
- [6] J.-M. Coron, Control and nonlinearity, in preparation. Zbl1140.93002
- [7] Coron J.-M., Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles bidimensionnels, C. R. Acad. Sci. Paris317 (1993) 271-276. Zbl0781.76013MR1233425
- [8] Coron J.-M., On the controllability of the 2-D incompressible Navier–Stokes equations with the Navier slip boundary conditions, ESAIM Control Optim. Calc. Var.1 (1995/1996) 35-75, (electronic). Zbl0872.93040MR1393067
- [9] Coron J.-M., Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations, ESAIM Control Optim. Calc. Var.8 (2002) 513-554, A tribute to J.L. Lions. Zbl1071.76012MR1932962
- [10] Coron J.-M., Trélat E., Global steady-state controllability of one-dimensional semilinear heat equations, SIAM J. Control Optim.43 (2) (2004) 549-569, (electronic). Zbl1101.93011MR2086173
- [11] Desjardins B., Esteban M.J., On weak solutions for fluid–rigid structure interaction: compressible and incompressible models, Comm. Partial Differential Equations25 (7–8) (2000) 1399-1413. Zbl0953.35118MR1765138
- [12] Di Perna R., Lions P.-L., Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math.98 (1989) 511-547. Zbl0696.34049MR1022305
- [13] Doubova A., Fernandez-Cara E., Some control results for simplified one-dimensional models of fluid–solid interaction, Math. Models Methods Appl. Sci.15 (5) (2005) 783-824. Zbl1122.93008MR2139944
- [14] Fabre C., Puel J.-P., Zuazua E., Approximate controllability of the semilinear heat equation, Proc. Roy. Soc. Edinburgh Sect. A125 (1) (1995) 31-61. Zbl0818.93032MR1318622
- [15] Fattorini H.O., Russell D.L., Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Rational Mech. Anal.43 (1971) 272-292. Zbl0231.93003MR335014
- [16] Fernández-Cara E., Guerrero S., Remarks on the controllability of the Burgers equation, C. R. Acad. Sci. Paris, Ser. I341 (2005) 229-232. Zbl1073.35033MR2164677
- [17] Fernández-Cara E., Guerrero S., Imanuvilov O.Yu., Puel J.-P., Local exact controllability of the Navier–Stokes system, J. Math. Pures Appl. (9)83 (12) (2004) 1501-1542. Zbl1267.93020MR2103189
- [18] Fursikov A.V., Imanuvilov O.Yu., Controllability of Evolution Equations, Lecture Notes Series, vol. 34, Seoul National University Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996. Zbl0862.49004MR1406566
- [19] Godlewski E., Raviart P.-A., Numerical Approximation of Hyperbolic Systems of Conservation Laws, Applied Mathematical Sciences, vol. 118, Springer-Verlag, New York, 1996. Zbl0860.65075MR1410987
- [20] S. Guerrero, O.Yu. Imanuvilov, Remarks on global controllability for the Burgers equation with two control forces (2006), submitted for publication. Zbl1248.93024MR2371111
- [21] Hörmander L., Lectures on Nonlinear Hyperbolic Differential Equations, Mathématiques & Applications (Berlin), vol. 26, Springer-Verlag, Berlin, 1997. Zbl0881.35001MR1466700
- [22] Horsin Molinaro T., On the controllability of the Burgers equation, ESAIM Control Optim. Calc. Var.3 (1998) 83-95, (electronic). Zbl0897.93034MR1612027
- [23] Horsin Molinaro T., Application of the exact null controllability of the heat equation to moving sets, C. R. Acad. Sci. Paris, Ser. I342 (2006) 849-852. Zbl1138.93013MR2224634
- [24] Imanuvilov O.Yu., On exact controllability for the Navier–Stokes equations, ESAIM Control Optim. Calc. Var.3 (1998) 97-131, (electronic). Zbl1052.93502MR1617825
- [25] Imanuvilov O.Yu., Remarks on exact controllability for the Navier–Stokes equations, ESAIM Control Optim. Calc. Var.6 (2001) 39-72, (electronic). Zbl0961.35104MR1804497
- [26] Ju L., Gunzburger M.D., Hou L.S., Approximation of exact boundary controllability problems for the 1-D wave equation by optimization-based methods, in: Recent Advances in Scientific Computing and Partial Differential Equations, Hong Kong, 2002, Contemp. Math., vol. 330, Amer. Math. Soc., Providence, RI, 2003, pp. 133-153. Zbl1036.65056MR2011716
- [27] Lebeau G., Robbiano L., Contrôle exact de l'équation de la chaleur, Comm. Partial Differential Equations20 (1–2) (1995) 335-356. Zbl0819.35071MR1312710
- [28] H. Maillot, E. Zuazua, Mouvement d'une particule dans un fluide, Prepublication, 1999.
- [29] Mirrahimi M., Rouchon P., Controllability of quantum harmonic oscillators, IEEE Trans. Automat. Control49 (5) (2004) 745-747. MR2057808
- [30] Nodet M., Variational assimilation of Lagrangian data in oceanography, Inverse Problems22 (1) (2006) 245-263. Zbl1089.86002MR2194194
- [31] A. Osses, Quelques méthodes théoriques et numériques de contrôlabilité et problèmes d'interactions fluide–structure, PhD thesis, Ecole Polytechnique, Paris, 1998.
- [32] Sontag E.D., Deterministic finite-dimensional systems, in: Mathematical Control Theory, second ed., Texts in Applied Mathematics, vol. 6, Springer-Verlag, New York, 1998, pp. xvi+531. Zbl0945.93001MR1640001
- [33] Vázquez J.L., Zuazua E., Lack of collision in a simplified 1D model for fluid-solid interaction, Math. Models Methods Appl. Sci.16 (5) (2006) 637-678. Zbl05045353MR2226121
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.