Local exact lagrangian controllability of the Burgers viscous equation

Thierry Horsin

Annales de l'I.H.P. Analyse non linéaire (2008)

  • Volume: 25, Issue: 2, page 219-230
  • ISSN: 0294-1449

How to cite

top

Horsin, Thierry. "Local exact lagrangian controllability of the Burgers viscous equation." Annales de l'I.H.P. Analyse non linéaire 25.2 (2008): 219-230. <http://eudml.org/doc/78786>.

@article{Horsin2008,
author = {Horsin, Thierry},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {controllability; boundary control; Lagrangian description; Burgers equation; evolution equation},
language = {eng},
number = {2},
pages = {219-230},
publisher = {Elsevier},
title = {Local exact lagrangian controllability of the Burgers viscous equation},
url = {http://eudml.org/doc/78786},
volume = {25},
year = {2008},
}

TY - JOUR
AU - Horsin, Thierry
TI - Local exact lagrangian controllability of the Burgers viscous equation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 2
SP - 219
EP - 230
LA - eng
KW - controllability; boundary control; Lagrangian description; Burgers equation; evolution equation
UR - http://eudml.org/doc/78786
ER -

References

top
  1. [1] Ancona F., Marson A., On the attainable set for scalar nonlinear conservation laws with boundary control, SIAM J. Control Optim.36 (1) (1998) 290-312. Zbl0919.35082MR1616586
  2. [2] Boulakia M., Osses A., Two-dimensional local null controllability of a rigid structure in a Navier–Stokes fluid, C. R. Acad. Sci. Paris, Ser. I343 (2) (2006) 105-109. Zbl1099.93006MR2242041
  3. [3] H. Brezis, T. Cazenave, Semilinear Evolution Equations and Applications in Mechanics and Physics, Pitman Lecture Notes, Addison-Wesley, Reading MA, in press. 
  4. [4] Coddington E.A., Levinson N., Theory of Ordinary Differential Equations, McGraw-Hill Book Company, New York, 1955. Zbl0064.33002MR69338
  5. [5] Conca C., San Martin J., Tucsnak M., Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid, Comm. Partial Differential Equations25 (5–6) (2000) 1019-1042. Zbl0954.35135MR1759801
  6. [6] J.-M. Coron, Control and nonlinearity, in preparation. Zbl1140.93002
  7. [7] Coron J.-M., Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles bidimensionnels, C. R. Acad. Sci. Paris317 (1993) 271-276. Zbl0781.76013MR1233425
  8. [8] Coron J.-M., On the controllability of the 2-D incompressible Navier–Stokes equations with the Navier slip boundary conditions, ESAIM Control Optim. Calc. Var.1 (1995/1996) 35-75, (electronic). Zbl0872.93040MR1393067
  9. [9] Coron J.-M., Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations, ESAIM Control Optim. Calc. Var.8 (2002) 513-554, A tribute to J.L. Lions. Zbl1071.76012MR1932962
  10. [10] Coron J.-M., Trélat E., Global steady-state controllability of one-dimensional semilinear heat equations, SIAM J. Control Optim.43 (2) (2004) 549-569, (electronic). Zbl1101.93011MR2086173
  11. [11] Desjardins B., Esteban M.J., On weak solutions for fluid–rigid structure interaction: compressible and incompressible models, Comm. Partial Differential Equations25 (7–8) (2000) 1399-1413. Zbl0953.35118MR1765138
  12. [12] Di Perna R., Lions P.-L., Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math.98 (1989) 511-547. Zbl0696.34049MR1022305
  13. [13] Doubova A., Fernandez-Cara E., Some control results for simplified one-dimensional models of fluid–solid interaction, Math. Models Methods Appl. Sci.15 (5) (2005) 783-824. Zbl1122.93008MR2139944
  14. [14] Fabre C., Puel J.-P., Zuazua E., Approximate controllability of the semilinear heat equation, Proc. Roy. Soc. Edinburgh Sect. A125 (1) (1995) 31-61. Zbl0818.93032MR1318622
  15. [15] Fattorini H.O., Russell D.L., Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Rational Mech. Anal.43 (1971) 272-292. Zbl0231.93003MR335014
  16. [16] Fernández-Cara E., Guerrero S., Remarks on the controllability of the Burgers equation, C. R. Acad. Sci. Paris, Ser. I341 (2005) 229-232. Zbl1073.35033MR2164677
  17. [17] Fernández-Cara E., Guerrero S., Imanuvilov O.Yu., Puel J.-P., Local exact controllability of the Navier–Stokes system, J. Math. Pures Appl. (9)83 (12) (2004) 1501-1542. Zbl1267.93020MR2103189
  18. [18] Fursikov A.V., Imanuvilov O.Yu., Controllability of Evolution Equations, Lecture Notes Series, vol. 34, Seoul National University Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996. Zbl0862.49004MR1406566
  19. [19] Godlewski E., Raviart P.-A., Numerical Approximation of Hyperbolic Systems of Conservation Laws, Applied Mathematical Sciences, vol. 118, Springer-Verlag, New York, 1996. Zbl0860.65075MR1410987
  20. [20] S. Guerrero, O.Yu. Imanuvilov, Remarks on global controllability for the Burgers equation with two control forces (2006), submitted for publication. Zbl1248.93024MR2371111
  21. [21] Hörmander L., Lectures on Nonlinear Hyperbolic Differential Equations, Mathématiques & Applications (Berlin), vol. 26, Springer-Verlag, Berlin, 1997. Zbl0881.35001MR1466700
  22. [22] Horsin Molinaro T., On the controllability of the Burgers equation, ESAIM Control Optim. Calc. Var.3 (1998) 83-95, (electronic). Zbl0897.93034MR1612027
  23. [23] Horsin Molinaro T., Application of the exact null controllability of the heat equation to moving sets, C. R. Acad. Sci. Paris, Ser. I342 (2006) 849-852. Zbl1138.93013MR2224634
  24. [24] Imanuvilov O.Yu., On exact controllability for the Navier–Stokes equations, ESAIM Control Optim. Calc. Var.3 (1998) 97-131, (electronic). Zbl1052.93502MR1617825
  25. [25] Imanuvilov O.Yu., Remarks on exact controllability for the Navier–Stokes equations, ESAIM Control Optim. Calc. Var.6 (2001) 39-72, (electronic). Zbl0961.35104MR1804497
  26. [26] Ju L., Gunzburger M.D., Hou L.S., Approximation of exact boundary controllability problems for the 1-D wave equation by optimization-based methods, in: Recent Advances in Scientific Computing and Partial Differential Equations, Hong Kong, 2002, Contemp. Math., vol. 330, Amer. Math. Soc., Providence, RI, 2003, pp. 133-153. Zbl1036.65056MR2011716
  27. [27] Lebeau G., Robbiano L., Contrôle exact de l'équation de la chaleur, Comm. Partial Differential Equations20 (1–2) (1995) 335-356. Zbl0819.35071MR1312710
  28. [28] H. Maillot, E. Zuazua, Mouvement d'une particule dans un fluide, Prepublication, 1999. 
  29. [29] Mirrahimi M., Rouchon P., Controllability of quantum harmonic oscillators, IEEE Trans. Automat. Control49 (5) (2004) 745-747. MR2057808
  30. [30] Nodet M., Variational assimilation of Lagrangian data in oceanography, Inverse Problems22 (1) (2006) 245-263. Zbl1089.86002MR2194194
  31. [31] A. Osses, Quelques méthodes théoriques et numériques de contrôlabilité et problèmes d'interactions fluide–structure, PhD thesis, Ecole Polytechnique, Paris, 1998. 
  32. [32] Sontag E.D., Deterministic finite-dimensional systems, in: Mathematical Control Theory, second ed., Texts in Applied Mathematics, vol. 6, Springer-Verlag, New York, 1998, pp. xvi+531. Zbl0945.93001MR1640001
  33. [33] Vázquez J.L., Zuazua E., Lack of collision in a simplified 1D model for fluid-solid interaction, Math. Models Methods Appl. Sci.16 (5) (2006) 637-678. Zbl05045353MR2226121

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.