Second-order elliptic integro-differential equations : viscosity solutions' theory revisited

Guy Barles; Cyril Imbert

Annales de l'I.H.P. Analyse non linéaire (2008)

  • Volume: 25, Issue: 3, page 567-585
  • ISSN: 0294-1449

How to cite

top

Barles, Guy, and Imbert, Cyril. "Second-order elliptic integro-differential equations : viscosity solutions' theory revisited." Annales de l'I.H.P. Analyse non linéaire 25.3 (2008): 567-585. <http://eudml.org/doc/78801>.

@article{Barles2008,
author = {Barles, Guy, Imbert, Cyril},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {viscosity solution; Jensen-Ishii lemma; comparison theorems; Lévy operators; stability; nonlinear elliptic integrodifferential equations; limiting semi-jets},
language = {eng},
number = {3},
pages = {567-585},
publisher = {Elsevier},
title = {Second-order elliptic integro-differential equations : viscosity solutions' theory revisited},
url = {http://eudml.org/doc/78801},
volume = {25},
year = {2008},
}

TY - JOUR
AU - Barles, Guy
AU - Imbert, Cyril
TI - Second-order elliptic integro-differential equations : viscosity solutions' theory revisited
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 3
SP - 567
EP - 585
LA - eng
KW - viscosity solution; Jensen-Ishii lemma; comparison theorems; Lévy operators; stability; nonlinear elliptic integrodifferential equations; limiting semi-jets
UR - http://eudml.org/doc/78801
ER -

References

top
  1. [1] N. Alibaud, C. Imbert, A non-local perturbation of first order Hamilton–Jacobi equations with unbounded data, submitted for publication, 2007. 
  2. [2] Alvarez O., Tourin A., Viscosity solutions of nonlinear integro-differential equations, Ann. Inst. H. Poincaré Anal. Non Linéaire13 (3) (1996) 293-317. Zbl0870.45002MR1395674
  3. [3] Arisawa M., A new definition of viscosity solutions for a class of second-order degenerate elliptic integro-differential equations, Ann. Inst. H. Poincaré23 (5) (2006) 695-711. Zbl1105.45004MR2259613
  4. [4] Arisawa M., Corrigendum in the comparison theorems in “a new definition of viscosity solutions for a class of second-order degenerate elliptic integro-differential equations”, Ann. Inst. H. Poincaré24 (1) (2006) 167-169. Zbl1125.45008MR2286563
  5. [5] Barles G., Buckdahn R., Pardoux E., Backward stochastic differential equations and integral-partial differential equations, Stochastics Stochastics Rep.60 (1–2) (1997) 57-83. Zbl0878.60036MR1436432
  6. [6] Bensaoud I., Sayah A., Stability results for Hamilton–Jacobi equations with integro-differential terms and discontinuous Hamiltonians, Arch. Math. (Basel)79 (5) (2002) 392-395. Zbl1022.35004MR1951309
  7. [7] Bertoin J., Lévy processes, Cambridge Tracts in Mathematics, vol. 121, Cambridge University Press, Cambridge, 1996. Zbl0861.60003MR1406564
  8. [8] Crandall M.G., Ishii H., Lions P.-L., User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.)27 (1) (1992) 1-67. Zbl0755.35015MR1118699
  9. [9] Garroni M.G., Menaldi J.L., Second Order Elliptic Integro-Differential Problems, Chapman & Hall/CRC Research Notes in Mathematics, vol. 430, Chapman & Hall/CRC, Boca Raton, FL, 2002. Zbl1014.45002MR1911531
  10. [10] Imbert C., A non-local regularization of first order Hamilton–Jacobi equations, J. Differential Equations211 (1) (2005) 218-246. Zbl1073.35059MR2121115
  11. [11] C. Imbert, R. Monneau, E. Rouy, Homogenization of first order equations with u / ϵ -periodic Hamiltonians. Part II: application to dislocation dynamics, Commun. Partial Differential Equations, submitted for publication. Zbl1143.35005MR2398239
  12. [12] Ishii H., On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic PDEs, Comm. Pure Appl. Math.42 (1) (1989) 15-45. Zbl0645.35025MR973743
  13. [13] Jakobsen E.R., Karlsen K.H., A “maximum principle for semicontinuous functions” applicable to integro-partial differential equations, NoDEA Nonlinear Differential Equations Appl.13 (2) (2006) 137-165. Zbl1105.45006MR2243708
  14. [14] Jensen R., The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations, Arch. Rational Mech. Anal.101 (1) (1988) 1-27. Zbl0708.35019MR920674
  15. [15] Øksendal B., Sulem A., Applied Stochastic Control of Jump Diffusions, Universitext, Springer-Verlag, Berlin, 2005. Zbl1074.93009MR2109687
  16. [16] Pham H., Optimal stopping of controlled jump diffusion processes: a viscosity solution approach, J. Math. Systems Estim. Control8 (1) (1998), 27 pp. (electronic). Zbl0899.60039MR1650147
  17. [17] Sayah A., Équations d'Hamilton–Jacobi du premier ordre avec termes intégro-différentiels. I. Unicité des solutions de viscosité. II. Existence de solutions de viscosité, Comm. Partial Differential Equations16 (6–7) (1991) 1057-1093. Zbl0742.45005MR1116853
  18. [18] Silvestre L., Hölder estimates for solutions of integro-differential equations like the fractional Laplace, Indiana Univ. Math. J.55 (3) (2006) 1155-1174. Zbl1101.45004MR2244602
  19. [19] Soner H.M., Optimal control with state-space constraint. II, SIAM J. Control Optim.24 (6) (1986) 1110-1122. Zbl0619.49013MR861089
  20. [20] Woyczyński W.A., Lévy processes in the physical sciences, in: Lévy processes, Birkhäuser Boston, Boston, MA, 2001, pp. 241-266. Zbl0982.60043MR1833700

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.