Non-homogeneous boundary value problems for the Korteweg–de Vries and the Korteweg–de Vries–Burgers equations in a quarter plane

Jerry L. Bona; S. M. Sun; Bing-Yu Zhang

Annales de l'I.H.P. Analyse non linéaire (2008)

  • Volume: 25, Issue: 6, page 1145-1185
  • ISSN: 0294-1449

How to cite

top

Bona, Jerry L., Sun, S. M., and Zhang, Bing-Yu. "Non-homogeneous boundary value problems for the Korteweg–de Vries and the Korteweg–de Vries–Burgers equations in a quarter plane." Annales de l'I.H.P. Analyse non linéaire 25.6 (2008): 1145-1185. <http://eudml.org/doc/78827>.

@article{Bona2008,
author = {Bona, Jerry L., Sun, S. M., Zhang, Bing-Yu},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Korteweg-de Vries equation; Korteweg-de Vries-Burgers equation; initial-boundary-value problems; nonlinear dispersive wave equations},
language = {eng},
number = {6},
pages = {1145-1185},
publisher = {Elsevier},
title = {Non-homogeneous boundary value problems for the Korteweg–de Vries and the Korteweg–de Vries–Burgers equations in a quarter plane},
url = {http://eudml.org/doc/78827},
volume = {25},
year = {2008},
}

TY - JOUR
AU - Bona, Jerry L.
AU - Sun, S. M.
AU - Zhang, Bing-Yu
TI - Non-homogeneous boundary value problems for the Korteweg–de Vries and the Korteweg–de Vries–Burgers equations in a quarter plane
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 6
SP - 1145
EP - 1185
LA - eng
KW - Korteweg-de Vries equation; Korteweg-de Vries-Burgers equation; initial-boundary-value problems; nonlinear dispersive wave equations
UR - http://eudml.org/doc/78827
ER -

References

top
  1. [1] Bekiranov D., The initial-value problem for the generalized Burgers' equation, Differential Integral Equations9 (1996) 1253-1265. Zbl0879.35131MR1409926
  2. [2] Boczar-Karakiewicz B., Bona J.L., Wave dominated shelves: a model of sand ridge formation by progressive infragravity waves, in: Knight R.J., McLean J.R. (Eds.), Shelf Sands and Sandstones, Canadian Society of Petroleum Geologists Memoir, vol. 11, 1986, pp. 163-179. 
  3. [3] Bona J.L., Bryant P.J., A mathematical model for long waves generated by wave makers in non-linear dispersive systems, Proc. Cambridge Philos. Soc.73 (1973) 391. Zbl0261.76007MR339651
  4. [4] Bona J.L., Luo L., Generalized Korteweg–de Vries equation in a quarter plane, Contemp. Math.221 (1999) 59-125. Zbl0922.35150
  5. [5] Bona J.L., Pritchard W.G., Scott L.R., An evaluation of a model equation for water waves, Philos. Trans. Roy. Soc. London Ser. A302 (1981) 457-510. Zbl0497.76023MR633485
  6. [6] Bona J.L., Scott L.R., Solutions of the Korteweg–de Vries equation in fractional order Sobolev spaces, Duke Math. J.43 (1976) 87-99. Zbl0335.35032MR393887
  7. [7] Bona J.L., Smith R., The initial-value problem for the Korteweg–de Vries equation, Philos. Trans. Roy. Soc. London Ser. A278 (1975) 555-601. Zbl0306.35027MR385355
  8. [8] Bona J.L., Sun S., Zhang B.-Y., A nonhomogeneous boundary-value problem for the Korteweg–de Vries equation in a quarter plane, Trans. Amer. Math. Soc.354 (2001) 427-490. Zbl0988.35141MR1862556
  9. [9] Bona J.L., Sun S., Zhang B.-Y., Forced oscillations of a damped KdV equation in a quarter plane, Commun. Contemp. Math.5 (2003) 369-400. Zbl1054.35076MR1992355
  10. [10] Bona J.L., Sun S., Zhang B.-Y., A nonhomogeneous boundary value problem for the KdV equation posed on a finite domain, Commun. Partial Differential Equations28 (2003) 1391-1436. Zbl1057.35049MR1998942
  11. [11] Bona J.L., Sun S., Zhang B.-Y., Conditional and unconditional well-posedness of non-linear evolution equations, Adv. Differential Equations9 (2004) 241-265. Zbl1103.35092MR2100628
  12. [12] Bona J.L., Sun S., Zhang B.-Y., Boundary smoothing properties of the Korteweg–de Vries equation in a quarter plane and applications, Dynamics Partial Differential Equations3 (2006) 1-70. Zbl1152.35099MR2221746
  13. [13] Bona J.L., Winther R., The Korteweg–de Vries equation, posed in a quarter plane, SIAM J. Math. Anal.14 (1983) 1056-1106. Zbl0529.35069MR718811
  14. [14] Bona J.L., Winther R., Korteweg–de Vries equation in a quarter plane, continuous dependence results, Differential Integral Equations2 (1989) 228-250. Zbl0734.35120MR984190
  15. [15] Bourgain J., Fourier transform restriction phenomena for certain lattice subsets and applications to non-linear evolution equations, part II: the KdV equation, Geom. Funct. Anal.3 (1993) 209-262. Zbl0787.35098MR1215780
  16. [16] Bourgain J., Periodic Korteweg–de Vries equation with measures as initial data, Selecta Math. (N.S.)3 (1997) 115-159. Zbl0891.35138MR1466164
  17. [17] Cohen A., Solutions of the Korteweg–de Vries equation from irregular data, Duke Math. J.45 (1978) 149-181. Zbl0372.35022MR470533
  18. [18] Cohen A., Existence and regularity for solutions of the Korteweg–de Vries equation, Arch. Rat. Mech. Anal.71 (1979) 143-175. Zbl0415.35069MR525222
  19. [19] Christ M., Colliander J., Tao T., Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math.125 (2003) 1235-1293. Zbl1048.35101MR2018661
  20. [20] Colliander J.E., Kenig C.E., The generalized Korteweg–de Vries equation on the half line, Comm. Partial Differential Equations27 (2002) 2187-2266. Zbl1041.35064MR1944029
  21. [21] Colliander J.E., Keel M., Staffilani G., Takaoka H., Tao T., Sharp global well-posedness for KdV and modified KdV on R and T, J. Amer. Math. Soc.16 (2003) 705-749. Zbl1025.35025MR1969209
  22. [22] Constantin P., Saut J.-C., Local smoothing properties of dispersive equations, J. Amer. Math. Soc.1 (1988) 413-446. Zbl0667.35061MR928265
  23. [23] Craig W., Kappeler T., Strauss W.A., Gain of regularity for equations of the Korteweg–de Vries type, Ann. Inst. H. Poincaré9 (1992) 147-186. Zbl0764.35021MR1160847
  24. [24] Dix D.B., The dissipation of non-linear dispersive waves: the case of asymptotically weak non-linearity, Comm. Partial Differential Equations17 (1992) 1665-1693. Zbl0762.35110MR1187625
  25. [25] Dix D.B., Nonuniqueness and uniqueness in the initial-value problem for Burgers' equation, SIAM J. Math. Anal.27 (1996) 708-724. Zbl0852.35123MR1382829
  26. [26] Faminskii A.V., The Cauchy problem and the mixed problem in the half strip for equations of Korteweg–de Vries type, Dinamika Sploshn. Sredy162 (1983) 152-158, (in Russian). Zbl0569.35066MR809894
  27. [27] Faminskii A.V., A mixed problem in a semistrip for the Korteweg–de Vries equation and its generalizations, Dinamika Sploshn. Sredy258 (1988) 54-94, (in Russian). English translation in, Trans. Moscow Math. Soc.51 (1989) 53-91. Zbl0706.35120MR983632
  28. [28] Faminskii A.V., Mixed problems for the Korteweg–de Vries equation, Sb. Math.190 (1999) 903-935. Zbl0933.35167MR1719565
  29. [29] Faminskii A.V., An initial boundary-value problem in a half-strip for the Korteweg–de Vries equation in fractional-order Sobolev spaces, Comm. Partial Differential Equations29 (2004) 1653-1695. Zbl1080.35117MR2105984
  30. [30] Fokas A.S., Its A.R., Soliton generation for initial-boundary value problems, Phys. Rev. Lett.68 (1992) 3117-3120. Zbl0969.35537MR1163545
  31. [31] Fokas A.S., Its A.R., An initial-boundary value problem for the Korteweg–de Vries equation, Math. Comput. Simulation37 (1994) 293-321. Zbl0832.35125MR1308105
  32. [32] Fokas A.S., Its A.R., Integrable equations on the half-infinite line. Solitons in science and engineering: theory and applications, Chaos Solitons Fractals5 (1995) 2367-2376. Zbl1080.35531MR1368225
  33. [33] Fokas A.S., Pelloni B., The solution of certain initial boundary-value problems for the linearized Korteweg–de Vries equation, Proc. Roy. Soc. London Ser. A454 (1998) 645-657. Zbl0914.35122MR1638297
  34. [34] Holmer J., The initial-boundary value problem for the Korteweg–de Vries equation, Comm. Partial Differential Equations31 (2006) 1151-1190. Zbl1111.35062MR2254610
  35. [35] Johnson R.S., A non-linear equation incorporating damping and dispersion, J. Fluid Mech.42 (1970) 49-60. Zbl0213.54904MR268546
  36. [36] Kappeler T., Topalov P., Well-posedness of KDV on H - 1 T , Duke Math. J.135 (2006) 327-360. Zbl1106.35081
  37. [37] Kato T., On the Korteweg–de Vries equation, Manuscripta Math.29 (1979) 89-99. Zbl0415.35070
  38. [38] Kato T., The Cauchy problem for the Korteweg–de Vries equation, in: Pitman Research Notes in Math., vol. 53, 1979, pp. 293-307. Zbl0542.35064MR631399
  39. [39] Kato T., On the Cauchy problem for the (generalized) Korteweg–de Vries equations, in: Advances in Mathematics Supplementary Studies, Studies Appl. Math., vol. 8, 1983, pp. 93-128. Zbl0549.34001MR759907
  40. [40] Kenig C.E., Ponce G., Vega L., On the (generalized) Korteweg–de Vries equation, Duke Math. J.59 (1989) 585-610. Zbl0795.35105MR1046740
  41. [41] Kenig C.E., Ponce G., Vega L., Well-posedness of the initial value problem for the KdV equation, J. Amer. Math. Soc.4 (1991) 323-347. Zbl0737.35102MR1086966
  42. [42] Kenig C.E., Ponce G., Vega L., Well-posedness and scattering results for the generalized Korteweg–de Vries equations via the contraction principle, Comm. Pure Appl. Math.46 (1993) 527-620. Zbl0808.35128MR1211741
  43. [43] Kenig C.E., Ponce G., Vega L., The Cauchy problem for the Korteweg–de Vries equation in Sobolev spaces of negative indices, Duke Math. J.71 (1993) 1-21. Zbl0787.35090MR1230283
  44. [44] Kenig C.E., Ponce G., Vega L., A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc.9 (1996) 573-603. Zbl0848.35114MR1329387
  45. [45] Kenig C.E., Ponce G., Vega L., On the ill-posedness of some canonical dispersive equations, Duke Math. J.106 (2001) 617-633. Zbl1034.35145MR1813239
  46. [46] Kruzhkov S.N., Faminskii A.V., Generalized solutions of the Cauchy problem for the Korteweg–de Vries equation, Mat. Sb. (N.S.)120 (1983) 396-425, (in Russian). English translation in, Math. USSR Sb.48 (1984) 391-421. Zbl0549.35104MR691986
  47. [47] Molinet L., Ribaud F., On the low regularity of the Korteweg–de Vries–Burgers equation, Int. Math. Res. Notices37 (2002) 1979-2005. Zbl1031.35126MR1918236
  48. [48] Russell D.L., Zhang B.-Y., Smoothing properties of solutions of the Korteweg–de Vries equation on a periodic domain with point dissipation, J. Math. Anal. Appl.190 (1995) 449-488. Zbl0845.35111MR1318405
  49. [49] Sachs R.L., Classical solutions of the Korteweg–de Vries equation for non-smooth initial data via inverse scattering, Comm. Partial Differential Equations10 (1985) 29-98. Zbl0562.35085MR773211
  50. [50] Saut J.-C., Temam R., Remarks on the Korteweg–de Vries equation, Israel J. Math.24 (1976) 78-87. Zbl0334.35062MR454425
  51. [51] Sjöberg A., On the Korteweg–de Vries equation: Existence and uniqueness, J. Math. Anal. Appl.29 (1970) 569-579. Zbl0179.43101MR410135
  52. [52] Tartar L., Non linèaire et régularité, J. Funct. Anal.9 (1972) 469-489. Zbl0241.46035MR310619
  53. [53] Temam R., Sur un problème non linéaire, J. Math. Pures Appl.48 (1969) 159-172. Zbl0187.03902MR261183
  54. [54] Ton B.A., Initial boundary value problems for the Korteweg–de Vries equation, J. Differential Equations25 (1977) 288-309. Zbl0372.35070MR487097
  55. [55] Tzvetkov N., Remark on the local ill-posedness for the KdV equation, C. R. Acad. Sci. Paris Sér. I Math.329 (1999) 1043-1047. Zbl0941.35097MR1735881
  56. [56] Zhang B.-Y., Analyticity of solutions for the generalized Korteweg–de Vries equation with respect to their initial datum, SIAM J. Math. Anal.26 (1995) 1488-1513. Zbl0837.35135MR1356456

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.