Non-homogeneous boundary value problems for the Korteweg–de Vries and the Korteweg–de Vries–Burgers equations in a quarter plane
Jerry L. Bona; S. M. Sun; Bing-Yu Zhang
Annales de l'I.H.P. Analyse non linéaire (2008)
- Volume: 25, Issue: 6, page 1145-1185
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBona, Jerry L., Sun, S. M., and Zhang, Bing-Yu. "Non-homogeneous boundary value problems for the Korteweg–de Vries and the Korteweg–de Vries–Burgers equations in a quarter plane." Annales de l'I.H.P. Analyse non linéaire 25.6 (2008): 1145-1185. <http://eudml.org/doc/78827>.
@article{Bona2008,
author = {Bona, Jerry L., Sun, S. M., Zhang, Bing-Yu},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Korteweg-de Vries equation; Korteweg-de Vries-Burgers equation; initial-boundary-value problems; nonlinear dispersive wave equations},
language = {eng},
number = {6},
pages = {1145-1185},
publisher = {Elsevier},
title = {Non-homogeneous boundary value problems for the Korteweg–de Vries and the Korteweg–de Vries–Burgers equations in a quarter plane},
url = {http://eudml.org/doc/78827},
volume = {25},
year = {2008},
}
TY - JOUR
AU - Bona, Jerry L.
AU - Sun, S. M.
AU - Zhang, Bing-Yu
TI - Non-homogeneous boundary value problems for the Korteweg–de Vries and the Korteweg–de Vries–Burgers equations in a quarter plane
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 6
SP - 1145
EP - 1185
LA - eng
KW - Korteweg-de Vries equation; Korteweg-de Vries-Burgers equation; initial-boundary-value problems; nonlinear dispersive wave equations
UR - http://eudml.org/doc/78827
ER -
References
top- [1] Bekiranov D., The initial-value problem for the generalized Burgers' equation, Differential Integral Equations9 (1996) 1253-1265. Zbl0879.35131MR1409926
- [2] Boczar-Karakiewicz B., Bona J.L., Wave dominated shelves: a model of sand ridge formation by progressive infragravity waves, in: Knight R.J., McLean J.R. (Eds.), Shelf Sands and Sandstones, Canadian Society of Petroleum Geologists Memoir, vol. 11, 1986, pp. 163-179.
- [3] Bona J.L., Bryant P.J., A mathematical model for long waves generated by wave makers in non-linear dispersive systems, Proc. Cambridge Philos. Soc.73 (1973) 391. Zbl0261.76007MR339651
- [4] Bona J.L., Luo L., Generalized Korteweg–de Vries equation in a quarter plane, Contemp. Math.221 (1999) 59-125. Zbl0922.35150
- [5] Bona J.L., Pritchard W.G., Scott L.R., An evaluation of a model equation for water waves, Philos. Trans. Roy. Soc. London Ser. A302 (1981) 457-510. Zbl0497.76023MR633485
- [6] Bona J.L., Scott L.R., Solutions of the Korteweg–de Vries equation in fractional order Sobolev spaces, Duke Math. J.43 (1976) 87-99. Zbl0335.35032MR393887
- [7] Bona J.L., Smith R., The initial-value problem for the Korteweg–de Vries equation, Philos. Trans. Roy. Soc. London Ser. A278 (1975) 555-601. Zbl0306.35027MR385355
- [8] Bona J.L., Sun S., Zhang B.-Y., A nonhomogeneous boundary-value problem for the Korteweg–de Vries equation in a quarter plane, Trans. Amer. Math. Soc.354 (2001) 427-490. Zbl0988.35141MR1862556
- [9] Bona J.L., Sun S., Zhang B.-Y., Forced oscillations of a damped KdV equation in a quarter plane, Commun. Contemp. Math.5 (2003) 369-400. Zbl1054.35076MR1992355
- [10] Bona J.L., Sun S., Zhang B.-Y., A nonhomogeneous boundary value problem for the KdV equation posed on a finite domain, Commun. Partial Differential Equations28 (2003) 1391-1436. Zbl1057.35049MR1998942
- [11] Bona J.L., Sun S., Zhang B.-Y., Conditional and unconditional well-posedness of non-linear evolution equations, Adv. Differential Equations9 (2004) 241-265. Zbl1103.35092MR2100628
- [12] Bona J.L., Sun S., Zhang B.-Y., Boundary smoothing properties of the Korteweg–de Vries equation in a quarter plane and applications, Dynamics Partial Differential Equations3 (2006) 1-70. Zbl1152.35099MR2221746
- [13] Bona J.L., Winther R., The Korteweg–de Vries equation, posed in a quarter plane, SIAM J. Math. Anal.14 (1983) 1056-1106. Zbl0529.35069MR718811
- [14] Bona J.L., Winther R., Korteweg–de Vries equation in a quarter plane, continuous dependence results, Differential Integral Equations2 (1989) 228-250. Zbl0734.35120MR984190
- [15] Bourgain J., Fourier transform restriction phenomena for certain lattice subsets and applications to non-linear evolution equations, part II: the KdV equation, Geom. Funct. Anal.3 (1993) 209-262. Zbl0787.35098MR1215780
- [16] Bourgain J., Periodic Korteweg–de Vries equation with measures as initial data, Selecta Math. (N.S.)3 (1997) 115-159. Zbl0891.35138MR1466164
- [17] Cohen A., Solutions of the Korteweg–de Vries equation from irregular data, Duke Math. J.45 (1978) 149-181. Zbl0372.35022MR470533
- [18] Cohen A., Existence and regularity for solutions of the Korteweg–de Vries equation, Arch. Rat. Mech. Anal.71 (1979) 143-175. Zbl0415.35069MR525222
- [19] Christ M., Colliander J., Tao T., Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math.125 (2003) 1235-1293. Zbl1048.35101MR2018661
- [20] Colliander J.E., Kenig C.E., The generalized Korteweg–de Vries equation on the half line, Comm. Partial Differential Equations27 (2002) 2187-2266. Zbl1041.35064MR1944029
- [21] Colliander J.E., Keel M., Staffilani G., Takaoka H., Tao T., Sharp global well-posedness for KdV and modified KdV on R and T, J. Amer. Math. Soc.16 (2003) 705-749. Zbl1025.35025MR1969209
- [22] Constantin P., Saut J.-C., Local smoothing properties of dispersive equations, J. Amer. Math. Soc.1 (1988) 413-446. Zbl0667.35061MR928265
- [23] Craig W., Kappeler T., Strauss W.A., Gain of regularity for equations of the Korteweg–de Vries type, Ann. Inst. H. Poincaré9 (1992) 147-186. Zbl0764.35021MR1160847
- [24] Dix D.B., The dissipation of non-linear dispersive waves: the case of asymptotically weak non-linearity, Comm. Partial Differential Equations17 (1992) 1665-1693. Zbl0762.35110MR1187625
- [25] Dix D.B., Nonuniqueness and uniqueness in the initial-value problem for Burgers' equation, SIAM J. Math. Anal.27 (1996) 708-724. Zbl0852.35123MR1382829
- [26] Faminskii A.V., The Cauchy problem and the mixed problem in the half strip for equations of Korteweg–de Vries type, Dinamika Sploshn. Sredy162 (1983) 152-158, (in Russian). Zbl0569.35066MR809894
- [27] Faminskii A.V., A mixed problem in a semistrip for the Korteweg–de Vries equation and its generalizations, Dinamika Sploshn. Sredy258 (1988) 54-94, (in Russian). English translation in, Trans. Moscow Math. Soc.51 (1989) 53-91. Zbl0706.35120MR983632
- [28] Faminskii A.V., Mixed problems for the Korteweg–de Vries equation, Sb. Math.190 (1999) 903-935. Zbl0933.35167MR1719565
- [29] Faminskii A.V., An initial boundary-value problem in a half-strip for the Korteweg–de Vries equation in fractional-order Sobolev spaces, Comm. Partial Differential Equations29 (2004) 1653-1695. Zbl1080.35117MR2105984
- [30] Fokas A.S., Its A.R., Soliton generation for initial-boundary value problems, Phys. Rev. Lett.68 (1992) 3117-3120. Zbl0969.35537MR1163545
- [31] Fokas A.S., Its A.R., An initial-boundary value problem for the Korteweg–de Vries equation, Math. Comput. Simulation37 (1994) 293-321. Zbl0832.35125MR1308105
- [32] Fokas A.S., Its A.R., Integrable equations on the half-infinite line. Solitons in science and engineering: theory and applications, Chaos Solitons Fractals5 (1995) 2367-2376. Zbl1080.35531MR1368225
- [33] Fokas A.S., Pelloni B., The solution of certain initial boundary-value problems for the linearized Korteweg–de Vries equation, Proc. Roy. Soc. London Ser. A454 (1998) 645-657. Zbl0914.35122MR1638297
- [34] Holmer J., The initial-boundary value problem for the Korteweg–de Vries equation, Comm. Partial Differential Equations31 (2006) 1151-1190. Zbl1111.35062MR2254610
- [35] Johnson R.S., A non-linear equation incorporating damping and dispersion, J. Fluid Mech.42 (1970) 49-60. Zbl0213.54904MR268546
- [36] Kappeler T., Topalov P., Well-posedness of KDV on , Duke Math. J.135 (2006) 327-360. Zbl1106.35081
- [37] Kato T., On the Korteweg–de Vries equation, Manuscripta Math.29 (1979) 89-99. Zbl0415.35070
- [38] Kato T., The Cauchy problem for the Korteweg–de Vries equation, in: Pitman Research Notes in Math., vol. 53, 1979, pp. 293-307. Zbl0542.35064MR631399
- [39] Kato T., On the Cauchy problem for the (generalized) Korteweg–de Vries equations, in: Advances in Mathematics Supplementary Studies, Studies Appl. Math., vol. 8, 1983, pp. 93-128. Zbl0549.34001MR759907
- [40] Kenig C.E., Ponce G., Vega L., On the (generalized) Korteweg–de Vries equation, Duke Math. J.59 (1989) 585-610. Zbl0795.35105MR1046740
- [41] Kenig C.E., Ponce G., Vega L., Well-posedness of the initial value problem for the KdV equation, J. Amer. Math. Soc.4 (1991) 323-347. Zbl0737.35102MR1086966
- [42] Kenig C.E., Ponce G., Vega L., Well-posedness and scattering results for the generalized Korteweg–de Vries equations via the contraction principle, Comm. Pure Appl. Math.46 (1993) 527-620. Zbl0808.35128MR1211741
- [43] Kenig C.E., Ponce G., Vega L., The Cauchy problem for the Korteweg–de Vries equation in Sobolev spaces of negative indices, Duke Math. J.71 (1993) 1-21. Zbl0787.35090MR1230283
- [44] Kenig C.E., Ponce G., Vega L., A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc.9 (1996) 573-603. Zbl0848.35114MR1329387
- [45] Kenig C.E., Ponce G., Vega L., On the ill-posedness of some canonical dispersive equations, Duke Math. J.106 (2001) 617-633. Zbl1034.35145MR1813239
- [46] Kruzhkov S.N., Faminskii A.V., Generalized solutions of the Cauchy problem for the Korteweg–de Vries equation, Mat. Sb. (N.S.)120 (1983) 396-425, (in Russian). English translation in, Math. USSR Sb.48 (1984) 391-421. Zbl0549.35104MR691986
- [47] Molinet L., Ribaud F., On the low regularity of the Korteweg–de Vries–Burgers equation, Int. Math. Res. Notices37 (2002) 1979-2005. Zbl1031.35126MR1918236
- [48] Russell D.L., Zhang B.-Y., Smoothing properties of solutions of the Korteweg–de Vries equation on a periodic domain with point dissipation, J. Math. Anal. Appl.190 (1995) 449-488. Zbl0845.35111MR1318405
- [49] Sachs R.L., Classical solutions of the Korteweg–de Vries equation for non-smooth initial data via inverse scattering, Comm. Partial Differential Equations10 (1985) 29-98. Zbl0562.35085MR773211
- [50] Saut J.-C., Temam R., Remarks on the Korteweg–de Vries equation, Israel J. Math.24 (1976) 78-87. Zbl0334.35062MR454425
- [51] Sjöberg A., On the Korteweg–de Vries equation: Existence and uniqueness, J. Math. Anal. Appl.29 (1970) 569-579. Zbl0179.43101MR410135
- [52] Tartar L., Non linèaire et régularité, J. Funct. Anal.9 (1972) 469-489. Zbl0241.46035MR310619
- [53] Temam R., Sur un problème non linéaire, J. Math. Pures Appl.48 (1969) 159-172. Zbl0187.03902MR261183
- [54] Ton B.A., Initial boundary value problems for the Korteweg–de Vries equation, J. Differential Equations25 (1977) 288-309. Zbl0372.35070MR487097
- [55] Tzvetkov N., Remark on the local ill-posedness for the KdV equation, C. R. Acad. Sci. Paris Sér. I Math.329 (1999) 1043-1047. Zbl0941.35097MR1735881
- [56] Zhang B.-Y., Analyticity of solutions for the generalized Korteweg–de Vries equation with respect to their initial datum, SIAM J. Math. Anal.26 (1995) 1488-1513. Zbl0837.35135MR1356456
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.