Well-posedness and scattering for the KP-II equation in a critical space
Martin Hadac; Sebastian Herr; Herbert Koch
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 3, page 917-941
- ISSN: 0294-1449
Access Full Article
topHow to cite
topHadac, Martin, Herr, Sebastian, and Koch, Herbert. "Well-posedness and scattering for the KP-II equation in a critical space." Annales de l'I.H.P. Analyse non linéaire 26.3 (2009): 917-941. <http://eudml.org/doc/78874>.
@article{Hadac2009,
author = {Hadac, Martin, Herr, Sebastian, Koch, Herbert},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Kadomtsev-Petviashvili-II equation; scale invariant space; well-posedness; scattering; bilinear estimates; bounded -variation},
language = {eng},
number = {3},
pages = {917-941},
publisher = {Elsevier},
title = {Well-posedness and scattering for the KP-II equation in a critical space},
url = {http://eudml.org/doc/78874},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Hadac, Martin
AU - Herr, Sebastian
AU - Koch, Herbert
TI - Well-posedness and scattering for the KP-II equation in a critical space
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 3
SP - 917
EP - 941
LA - eng
KW - Kadomtsev-Petviashvili-II equation; scale invariant space; well-posedness; scattering; bilinear estimates; bounded -variation
UR - http://eudml.org/doc/78874
ER -
References
top- [1] Biondini G., Chakravarty S., Elastic and inelastic line-soliton solutions of the Kadomtsev–Petviashvili II equation, Math. Comput. Simulation74 (2–3) (2007) 237-250. Zbl1118.35041MR2307861
- [2] Bourgain J., On the Cauchy problem for the Kadomtsev–Petviashvili equation, Geom. Funct. Anal.3 (4) (1993) 315-341. Zbl0787.35086MR1223434
- [3] Christ M., Colliander J., Tao T., Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math.125 (6) (2003) 1235-1293. Zbl1048.35101MR2018661
- [4] Dickey L.A., Soliton Equations and Hamiltonian Systems, Advanced Series in Mathematical Physics, vol. 26, second ed., World Scientific Publishing Co. Inc., River Edge, NJ, 2003. Zbl1140.35012MR1964513
- [5] Federer H., Geometric Measure Theory, Reprint of the 1969 edition, Classics in Mathematics, Springer-Verlag, Berlin, 1996. Zbl0874.49001MR257325
- [6] Ginibre J., Tsutsumi Y., Velo G., On the Cauchy problem for the Zakharov system, J. Funct. Anal.151 (2) (1997) 384-436. Zbl0894.35108MR1491547
- [7] M. Hadac, Well-posedness for the Kadomtsev–Petviashvili II equation and generalisations, Trans. Amer. Math. Soc., in press. Zbl1157.35094MR2434299
- [8] Isaza J. Pedro, Mejía L. Jorge, Global solution for the Kadomtsev–Petviashvili equation (KPII) in anisotropic Sobolev spaces of negative indices, Electron. J. Differential Equations68 (2003), 12 pp. (electronic). Zbl1037.35068MR1993776
- [9] Kadomtsev B.B., Petviashvili V.I., On the stability of solitary waves in weakly dispersing media, Sov. Phys. Dokl.15 (1970) 539-541. Zbl0217.25004
- [10] Kenig C.E., Ziesler S.N., Local well posedness for modified Kadomstev–Petviashvili equations, Differential Integral Equations18 (10) (2005) 1111-1146. Zbl1212.35419MR2162626
- [11] Kiselev O.M., Asymptotics of solutions of multidimensional integrable equations and their perturbations, J. Math. Sci., New York138 (6) (2006) 6067-6230, Translated from Sovremennaya Matematika. Fundamental'nye Napravleniya, vol. 11, Differential Equations, 2004. Zbl1330.37064MR2120870
- [12] Koch H., Tataru D., Dispersive estimates for principally normal pseudodifferential operators, Comm. Pure Appl. Math.58 (2) (2005) 217-284. Zbl1078.35143MR2094851
- [13] Koch H., Tataru D., A priori bounds for the 1D cubic NLS in negative Sobolev spaces, Internat. Math. Res. Notices2007 (2007), article ID rnm053, 36 pages. Zbl1169.35055MR2353092
- [14] Martel Y., Merle F., Asymptotic stability of solitons of the subcritical gKdV equations revisited, Nonlinearity18 (1) (2005) 55-80. Zbl1064.35171MR2109467
- [15] Peetre J., New Thoughts on Besov Spaces, Duke University Mathematics Series. I, Mathematics Department, Duke University, Durham, 1976, 305 p. Zbl0356.46038MR461123
- [16] F. Rousset, N. Tzvetkov, Transverse nonlinear instability for two-dimensional dispersive models, Ann. I. H. Poincaré – AN (2008), in press, doi: 10.1016/j.anihpc.2007.09.006. Zbl1169.35374MR2504040
- [17] Saut J.-C., Remarks on the generalized Kadomtsev–Petviashvili equations, Indiana Univ. Math. J.42 (3) (1993) 1011-1026. Zbl0814.35119MR1254130
- [18] Schul'man E.I., Zakharov V.E., Degenerative dispersion laws, motion invariants and kinetic equations, Physica D1 (2) (1980) 192-202. Zbl1194.37162MR581350
- [19] Takaoka H., Well-posedness for the Kadomtsev–Petviashvili II equation, Adv. Differential Equations5 (10–12) (2000) 1421-1443. Zbl0994.35108MR1785680
- [20] Takaoka H., Tzvetkov N., On the local regularity of the Kadomtsev–Petviashvili-II equation, Internat. Math. Res. Notices2001 (2) (2001) 77-114. Zbl0977.35126MR1810481
- [21] Tao T., Scattering for the quartic generalised Korteweg–de Vries equation, J. Differential Equations232 (2) (2007) 623-651. Zbl1171.35107MR2286393
- [22] Tzvetkov N., On the Cauchy problem for Kadomtsev–Petviashvili equation, Comm. Partial Differential Equations24 (7–8) (1999) 1367-1397. Zbl0934.35161MR1697491
- [23] Ukai S., Local solutions of the Kadomtsev–Petviashvili equation, J. Fac. Sci. Univ. Tokyo Sect. IA Math.36 (2) (1989) 193-209. Zbl0703.35155MR1014996
- [24] Wiener N., The quadratic variation of a function and its Fourier coefficients, in: Masani P.R. (Ed.), Collected Works with Commentaries. Volume II: Generalized Harmonic Analysis and Tauberian Theory; Classical Harmonic and Complex Analysis, Mathematicians of Our Time, vol. 15, The MIT Press, Cambridge, MA – London, 1979, (1924), XIII, 969 p. Zbl0557.01016MR554238
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.