Well-posedness and scattering for the KP-II equation in a critical space

Martin Hadac; Sebastian Herr; Herbert Koch

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 3, page 917-941
  • ISSN: 0294-1449

How to cite

top

Hadac, Martin, Herr, Sebastian, and Koch, Herbert. "Well-posedness and scattering for the KP-II equation in a critical space." Annales de l'I.H.P. Analyse non linéaire 26.3 (2009): 917-941. <http://eudml.org/doc/78874>.

@article{Hadac2009,
author = {Hadac, Martin, Herr, Sebastian, Koch, Herbert},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Kadomtsev-Petviashvili-II equation; scale invariant space; well-posedness; scattering; bilinear estimates; bounded -variation},
language = {eng},
number = {3},
pages = {917-941},
publisher = {Elsevier},
title = {Well-posedness and scattering for the KP-II equation in a critical space},
url = {http://eudml.org/doc/78874},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Hadac, Martin
AU - Herr, Sebastian
AU - Koch, Herbert
TI - Well-posedness and scattering for the KP-II equation in a critical space
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 3
SP - 917
EP - 941
LA - eng
KW - Kadomtsev-Petviashvili-II equation; scale invariant space; well-posedness; scattering; bilinear estimates; bounded -variation
UR - http://eudml.org/doc/78874
ER -

References

top
  1. [1] Biondini G., Chakravarty S., Elastic and inelastic line-soliton solutions of the Kadomtsev–Petviashvili II equation, Math. Comput. Simulation74 (2–3) (2007) 237-250. Zbl1118.35041MR2307861
  2. [2] Bourgain J., On the Cauchy problem for the Kadomtsev–Petviashvili equation, Geom. Funct. Anal.3 (4) (1993) 315-341. Zbl0787.35086MR1223434
  3. [3] Christ M., Colliander J., Tao T., Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math.125 (6) (2003) 1235-1293. Zbl1048.35101MR2018661
  4. [4] Dickey L.A., Soliton Equations and Hamiltonian Systems, Advanced Series in Mathematical Physics, vol. 26, second ed., World Scientific Publishing Co. Inc., River Edge, NJ, 2003. Zbl1140.35012MR1964513
  5. [5] Federer H., Geometric Measure Theory, Reprint of the 1969 edition, Classics in Mathematics, Springer-Verlag, Berlin, 1996. Zbl0874.49001MR257325
  6. [6] Ginibre J., Tsutsumi Y., Velo G., On the Cauchy problem for the Zakharov system, J. Funct. Anal.151 (2) (1997) 384-436. Zbl0894.35108MR1491547
  7. [7] M. Hadac, Well-posedness for the Kadomtsev–Petviashvili II equation and generalisations, Trans. Amer. Math. Soc., in press. Zbl1157.35094MR2434299
  8. [8] Isaza J. Pedro, Mejía L. Jorge, Global solution for the Kadomtsev–Petviashvili equation (KPII) in anisotropic Sobolev spaces of negative indices, Electron. J. Differential Equations68 (2003), 12 pp. (electronic). Zbl1037.35068MR1993776
  9. [9] Kadomtsev B.B., Petviashvili V.I., On the stability of solitary waves in weakly dispersing media, Sov. Phys. Dokl.15 (1970) 539-541. Zbl0217.25004
  10. [10] Kenig C.E., Ziesler S.N., Local well posedness for modified Kadomstev–Petviashvili equations, Differential Integral Equations18 (10) (2005) 1111-1146. Zbl1212.35419MR2162626
  11. [11] Kiselev O.M., Asymptotics of solutions of multidimensional integrable equations and their perturbations, J. Math. Sci., New York138 (6) (2006) 6067-6230, Translated from Sovremennaya Matematika. Fundamental'nye Napravleniya, vol. 11, Differential Equations, 2004. Zbl1330.37064MR2120870
  12. [12] Koch H., Tataru D., Dispersive estimates for principally normal pseudodifferential operators, Comm. Pure Appl. Math.58 (2) (2005) 217-284. Zbl1078.35143MR2094851
  13. [13] Koch H., Tataru D., A priori bounds for the 1D cubic NLS in negative Sobolev spaces, Internat. Math. Res. Notices2007 (2007), article ID rnm053, 36 pages. Zbl1169.35055MR2353092
  14. [14] Martel Y., Merle F., Asymptotic stability of solitons of the subcritical gKdV equations revisited, Nonlinearity18 (1) (2005) 55-80. Zbl1064.35171MR2109467
  15. [15] Peetre J., New Thoughts on Besov Spaces, Duke University Mathematics Series. I, Mathematics Department, Duke University, Durham, 1976, 305 p. Zbl0356.46038MR461123
  16. [16] F. Rousset, N. Tzvetkov, Transverse nonlinear instability for two-dimensional dispersive models, Ann. I. H. Poincaré – AN (2008), in press, doi: 10.1016/j.anihpc.2007.09.006. Zbl1169.35374MR2504040
  17. [17] Saut J.-C., Remarks on the generalized Kadomtsev–Petviashvili equations, Indiana Univ. Math. J.42 (3) (1993) 1011-1026. Zbl0814.35119MR1254130
  18. [18] Schul'man E.I., Zakharov V.E., Degenerative dispersion laws, motion invariants and kinetic equations, Physica D1 (2) (1980) 192-202. Zbl1194.37162MR581350
  19. [19] Takaoka H., Well-posedness for the Kadomtsev–Petviashvili II equation, Adv. Differential Equations5 (10–12) (2000) 1421-1443. Zbl0994.35108MR1785680
  20. [20] Takaoka H., Tzvetkov N., On the local regularity of the Kadomtsev–Petviashvili-II equation, Internat. Math. Res. Notices2001 (2) (2001) 77-114. Zbl0977.35126MR1810481
  21. [21] Tao T., Scattering for the quartic generalised Korteweg–de Vries equation, J. Differential Equations232 (2) (2007) 623-651. Zbl1171.35107MR2286393
  22. [22] Tzvetkov N., On the Cauchy problem for Kadomtsev–Petviashvili equation, Comm. Partial Differential Equations24 (7–8) (1999) 1367-1397. Zbl0934.35161MR1697491
  23. [23] Ukai S., Local solutions of the Kadomtsev–Petviashvili equation, J. Fac. Sci. Univ. Tokyo Sect. IA Math.36 (2) (1989) 193-209. Zbl0703.35155MR1014996
  24. [24] Wiener N., The quadratic variation of a function and its Fourier coefficients, in: Masani P.R. (Ed.), Collected Works with Commentaries. Volume II: Generalized Harmonic Analysis and Tauberian Theory; Classical Harmonic and Complex Analysis, Mathematicians of Our Time, vol. 15, The MIT Press, Cambridge, MA – London, 1979, (1924), XIII, 969 p. Zbl0557.01016MR554238

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.