Regularity of the optimal shape for the first eigenvalue of the laplacian with volume and inclusion constraints
Tanguy Briançon; Jimmy Lamboley
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 4, page 1149-1163
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBriançon, Tanguy, and Lamboley, Jimmy. "Regularity of the optimal shape for the first eigenvalue of the laplacian with volume and inclusion constraints." Annales de l'I.H.P. Analyse non linéaire 26.4 (2009): 1149-1163. <http://eudml.org/doc/78883>.
@article{Briançon2009,
author = {Briançon, Tanguy, Lamboley, Jimmy},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {shape optimization; eigenvalues of the Laplace operator; regularity of free boundaries},
language = {eng},
number = {4},
pages = {1149-1163},
publisher = {Elsevier},
title = {Regularity of the optimal shape for the first eigenvalue of the laplacian with volume and inclusion constraints},
url = {http://eudml.org/doc/78883},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Briançon, Tanguy
AU - Lamboley, Jimmy
TI - Regularity of the optimal shape for the first eigenvalue of the laplacian with volume and inclusion constraints
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 4
SP - 1149
EP - 1163
LA - eng
KW - shape optimization; eigenvalues of the Laplace operator; regularity of free boundaries
UR - http://eudml.org/doc/78883
ER -
References
top- [1] Alt H.W., Caffarelli L.A., Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math.325 (1981) 105-144. Zbl0449.35105MR618549
- [2] Alt H.W., Caffarelli L.A., Friedman A., Variational problems with two phases and their free boundaries, Trans. Amer. Math. Soc.282 (2) (1984) 431-461. Zbl0844.35137MR732100
- [3] Briançon T., Regularity of optimal shapes for the Dirichlet's energy with volume constraint, ESAIM: COCV10 (2004) 99-122. Zbl1118.35078MR2084257
- [4] Briançon T., Hayouni M., Pierre M., Lipschitz continuity of state functions in some optimal shaping, Calc. Var. Partial Differential Equations23 (1) (2005) 13-32. Zbl1062.49035MR2133659
- [5] Buttazzo G., Dal Maso G., An existence result for a class of shape optimization problems, Arch. Ration. Mech. Anal.122 (1993) 183-195. Zbl0811.49028MR1217590
- [6] Caffarelli L.A., Jerison D., Kenig C.E., Global energy minimizers for free boundary problems and full regularity in three dimensions, in: Contemp. Math., vol. 350, Amer. Math. Soc., Providence, RI, 2004, pp. 83-97. Zbl1330.35545MR2082392
- [7] Crouzeix M., Variational approach of a magnetic shaping problem, Eur. J. Mech. B/Fluids10 (1991) 527-536. Zbl0741.76089MR1139607
- [8] D. De Silva, D. Jerison, A singular energy minimizing free boundary, J. Reine Angew. Math., in press. Zbl1185.35050
- [9] Evans L.C., Gariepy R.F., Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. Zbl0804.28001MR1158660
- [10] Giusti E., Minimal Surfaces and Functions of Bounded Variation, Monographs in Mathematics, vol. 80, Birkhäuser Verlag, Basel–Boston, MA, 1984. Zbl0545.49018MR775682
- [11] Gustafsson B., Shahgholian H., Existence and geometric properties of solutions of a free boundary problem in potential theory, J. Reine Angew. Math.473 (1996) 137-179. Zbl0846.31005MR1390686
- [12] Hayouni M., Sur la minimisation de la première valeur propre du laplacien, C. R. Acad. Sci. Paris, Sér. I330 (7) (2000) 551-556. Zbl0960.49028MR1760437
- [13] Wagner A., Optimal shape problems for eigenvalues, Comm. Partial Differential Equations30 (7–9) (2005). Zbl1121.35038MR2180294
- [14] Weiss G.S., Partial regularity for weak solutions of an elliptic free boundary problem, Comm. Partial Differential Equations23 (1998) 439-457. Zbl0897.35017MR1620644
- [15] Weiss G.S., Partial regularity for a minimum problem with free boundary, J. Geom. Anal.9 (2) (1999) 317-326. Zbl0960.49026MR1759450
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.