Singly periodic solutions of a semilinear equation

Geneviève Allain; Anne Beaulieu

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 4, page 1277-1297
  • ISSN: 0294-1449

How to cite

top

Allain, Geneviève, and Beaulieu, Anne. "Singly periodic solutions of a semilinear equation." Annales de l'I.H.P. Analyse non linéaire 26.4 (2009): 1277-1297. <http://eudml.org/doc/78890>.

@article{Allain2009,
author = {Allain, Geneviève, Beaulieu, Anne},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {periodic solutions bifurcation; asymptotic behavior of solutions; boundary value problems for higher-order elliptic equations},
language = {eng},
number = {4},
pages = {1277-1297},
publisher = {Elsevier},
title = {Singly periodic solutions of a semilinear equation},
url = {http://eudml.org/doc/78890},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Allain, Geneviève
AU - Beaulieu, Anne
TI - Singly periodic solutions of a semilinear equation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 4
SP - 1277
EP - 1297
LA - eng
KW - periodic solutions bifurcation; asymptotic behavior of solutions; boundary value problems for higher-order elliptic equations
UR - http://eudml.org/doc/78890
ER -

References

top
  1. [1] Adimurthi, Mancini G., Yadava S.L., The role of mean curvature in a semilinear Neumann problem involving the critical Sobolev exponent, Comm. Partial Differential Equations20 (3–4) (1995) 591-631. Zbl0847.35047MR1318082
  2. [2] Allain G., Beaulieu A., High frequency periodic solutions of semilinear equations, C. R. Acad. Sci. Paris, Ser. I345 (2007). Zbl1127.35011MR2361502
  3. [3] Almeida L., Damascelli L., Ge Y., A few symmetry results for nonlinear elliptic PDE on noncompact manifolds, Ann. Inst. H. Poincaré Anal. Non Linéaire19 (3) (2002) 313-342. Zbl1029.35096MR1956953
  4. [4] Ambrosetti A., Malchiodi A., Ni W.M., Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres II, Indiana Univ. Math. J.53 (2) (2004) 297-329. Zbl1081.35008MR2056434
  5. [5] Berestycki H., Nirenberg L., On the method of moving plane and the sliding method, Bol. Soc. Bras. Mat.22 (1991) 1-39. Zbl0784.35025MR1159383
  6. [6] Buffoni B., Toland J., Analytic Theory of Global Bifurcation. An Introduction, Princeton Series in Applied Mathematics, Princeton University Press, Princeton, NJ, 2003. Zbl1021.47044MR1956130
  7. [7] Cheng S.Y., Eigenfunctions and nodal sets, Comment. Math. Helv.51 (1976) 43-55. Zbl0334.35022MR397805
  8. [8] Courant R., Hilbert D., Methods of Mathematical Physics, I, Interscience, 1962. Zbl0099.29504
  9. [9] Crandall M., Rabinowitz P., Bifurcation from simple eigenvalues, J. Funct. Anal.8 (1973) 161-180. Zbl0275.47044MR341212
  10. [10] Dancer E.N., New solutions of equations on R n , Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)XXX (2001) 535-563. Zbl1025.35009MR1896077
  11. [11] Dancer E.N., Yan S., Multipeak solutions for a singularly perturbed Neumann problem, Pacific J. Math.189 (2) (1999) 241-261. Zbl0933.35070MR1696122
  12. [12] del Pino M., Musso M., Pistoia A., Supercritical boundary bubbling in a semilinear Neumann problem, Ann. Inst. H. Poincaré Anal. Non Linéaire22 (1) (2005) 45-82. Zbl1130.35064MR2114411
  13. [13] Gidas B., Ni W.M., Nirenberg L., Symmetry of positive solutions of nonlinear elliptic equations in R n , in: Mathematical Analysis and Applications, Part A, Adv. Math. Suppl. Studies, vol. 7A, Academic Press, New York, 1981, pp. 369-402. Zbl0469.35052MR634248
  14. [14] Gilbarg D., Trudinger N., Elliptic Partial Differential Equations of Second Order, second ed., Springer-Verlag, Berlin, 1983. Zbl0562.35001MR737190
  15. [15] Kwong M.K., Uniqueness of positive solutions of Δ u - u + u p = 0 in R n , Arch. Rational Mech. Anal.105 (3) (1989) 243-266. Zbl0676.35032MR969899
  16. [16] Malchiodi A., Montenegro M., Boundary concentration phenomena for a singularly perturbed elliptic problem, Comm. Pure Appl. Math.LV (2002) 1507-1568. Zbl1124.35305MR1923818
  17. [17] Protter M.H., Weinberger H.F., Maximum Principles in Differential Equations, Prentice-Hall, Englewood Cliffs, NJ, 1967. Zbl0153.13602MR219861
  18. [18] Sattinger D., Topics in Stability and Bifurcation Theory, Lecture Notes in Math., vol. 309, Springer-Verlag, 1973. Zbl0248.35003MR463624
  19. [19] Rabinowitz P., Some aspects of nonlinear eigenvalue problems, Rocky Mountain J. Math.3 (2) (1973) 161-202. Zbl0255.47069MR320850
  20. [20] Volpert A., Volpert V., Fredholm property of general elliptic problems, Trans. Moscow Math. Soc. (2006) 127-197. Zbl1219.35078MR2301593

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.