On convexity, the Weyl group and the Iwasawa decomposition
Annales scientifiques de l'École Normale Supérieure (1973)
- Volume: 6, Issue: 4, page 413-455
- ISSN: 0012-9593
Access Full Article
topHow to cite
topKostant, Bertram. "On convexity, the Weyl group and the Iwasawa decomposition." Annales scientifiques de l'École Normale Supérieure 6.4 (1973): 413-455. <http://eudml.org/doc/81923>.
@article{Kostant1973,
author = {Kostant, Bertram},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {4},
pages = {413-455},
publisher = {Elsevier},
title = {On convexity, the Weyl group and the Iwasawa decomposition},
url = {http://eudml.org/doc/81923},
volume = {6},
year = {1973},
}
TY - JOUR
AU - Kostant, Bertram
TI - On convexity, the Weyl group and the Iwasawa decomposition
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1973
PB - Elsevier
VL - 6
IS - 4
SP - 413
EP - 455
LA - eng
UR - http://eudml.org/doc/81923
ER -
References
top- [1] S. ARAKI, On root systems and an infinitesmal classification of irreducible symmetric spaces (J. of Math, Osaka City Univ., vol. 13, 1962, p. 1-34). Zbl0123.03002MR27 #3743
- [2] S. HELGASON, Differential Geometry and Symmetric Spaces, Academic Press, New-York, 1962. Zbl0111.18101MR26 #2986
- [3] A. HORN, Doubly stockastic matrices and the diagonal of a rotation matrix (Amer. J. Math, vol. 76, 1954, p. 620-630). Zbl0055.24601MR16,105c
- [4] J. E. HUMPHREYS, Introduction to Lie algebras and representation theory, Springer-Verlag, 1972. Zbl0254.17004MR48 #2197
- [5] N. IWAHORI and I. SATAKE, On Cartan subalgebras of a Lie algebra, Kodai Math Seminar Report, N° 3, 1950, p. 51-60. Zbl0045.01102MR12,585c
- [6] B. KOSTANT, The principal three dimensional subgroups and the Betti numbers of a complex semi-simple Lie group (Amer. J. Math., vol. 81, 1959, p. 973-1032). Zbl0099.25603MR22 #5693
- [7] B. KOSTANT, Lie group representations on polynomial rings (Amer. J. Math., vol. 86, 1963, p. 327-402). Zbl0124.26802MR28 #1252
- [8] B. KOSTANT and S. RALLIS, Orbits and representations associated with symmetric spaces (Amer. J. Math., vol. 93, 1971, p. 753-809). Zbl0224.22013MR47 #399
- [9] A. LENARD, Generalization of the Golden-Thompson Inequality, Tr eA eB tr eA+B (Indiana Univ. Math. J., vol. 21, 1971, p. 457-467). Zbl0215.08606MR44 #6724
- [10] O. LOOS, Symmetric Spaces, I. General Theory, Benjamin, 1969. Zbl0175.48601MR39 #365a
- [11] G. D. MOSTOW, Some new decomposition theorem for semi-simple Lie groups (Memoirs of the A. M. S., N° 14, 1955). Zbl0064.25901MR16,1087g
- [12] Classification de Groupes de Lie algebriques, (Séminaire C. Chevalley, 1956-1958, vol. I).
- [13] M. SUGIURA, Conjugate classes of Cartan subalgebras in real semi-simple Lie algebras (J. Math Soc., vol. 11, 1959, p. 374-434). Zbl0204.04201MR26 #3827
- [14] C. THOMPSON, Inequalities and partial orders on matrix spaces (Indiana Univ. Math. J., vol. 21, 1971, p. 469-480). Zbl0227.15005MR45 #3442
- [15] F. WARNER, Foundations of Differential Manifolds and Lie Groups, Scott, Foresman and Company. Zbl0241.58001
- [16] A. HORN, On the eigenvalues of a matrix with prescribed singular values, Proceedings of the Amer. Math. Soc., vol. 5, 1954, p. 4-7. Zbl0055.00908MR15,847d
Citations in EuDML Documents
top- Piotr Graczyk, A central limit theorem on the space of positive definite symmetric matrices
- Mogens Flensted-Jensen, David L. Ragozin, Spherical functions are Fourier transforms of -functions
- J. J. Duistermaat, On the similarity between the Iwasawa projection and the diagonal part
- Zachary Sarver, Tin-Yau Tam, Extension of Wang-Gong monotonicity result in semisimple Lie groups
- Didier Arnal, Mabrouk Ben Ammar, Mohamed Selmi, Le problème de la réduction à un sous-groupe dans la quantification par déformation
- Françoise Vincent, Une note sur les fonctions invariantes
- Victor Guillemin, On the Moment Mapping
- Xuhua Liu, Tin-Yau Tam, Extensions of Three Matrix Inequalities to Semisimple Lie Groups
- Bernard Dacorogna, Pierre Maréchal, Convex -invariant functions and refinements of von Neumann’s inequality
- Joachim Hilgert, Karl-Hermann Neeb, Werner Plank, Symplectic convexity theorems and coadjoint orbits
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.