Filtrations on algebraic cycles and homology

Eric M. Friedlander

Annales scientifiques de l'École Normale Supérieure (1995)

  • Volume: 28, Issue: 3, page 317-343
  • ISSN: 0012-9593

How to cite

top

Friedlander, Eric M.. "Filtrations on algebraic cycles and homology." Annales scientifiques de l'École Normale Supérieure 28.3 (1995): 317-343. <http://eudml.org/doc/82385>.

@article{Friedlander1995,
author = {Friedlander, Eric M.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Lawson homology; algebraic equivalence classes of algebraic cycles; singular integral homology; graph mapping; -map},
language = {eng},
number = {3},
pages = {317-343},
publisher = {Elsevier},
title = {Filtrations on algebraic cycles and homology},
url = {http://eudml.org/doc/82385},
volume = {28},
year = {1995},
}

TY - JOUR
AU - Friedlander, Eric M.
TI - Filtrations on algebraic cycles and homology
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1995
PB - Elsevier
VL - 28
IS - 3
SP - 317
EP - 343
LA - eng
KW - Lawson homology; algebraic equivalence classes of algebraic cycles; singular integral homology; graph mapping; -map
UR - http://eudml.org/doc/82385
ER -

References

top
  1. [Andreotti-Frankel] A. ANDREOTTI and T. FRANKEL, The Lefschetz theorem on hyperplane sections (Ann. of Math. (2), Vol. 59, 1959, pp. 713-717). Zbl0115.38405MR31 #1685
  2. [Bloch-Ogus] S. BLOCH and A. OGUS, Gersten's conjecture and the homology of schemes (Ann. Scient. Ec. Norm. Sup., 4e série, t. 7, 1974, pp. 181-202). Zbl0307.14008MR54 #318
  3. [F] E. FRIEDLANDER, Algebraic cycles, Chow varieties, and Lawson homology (Compositio Mathematica, Vol. 77, 1991, pp. 55-93). Zbl0754.14011MR92a:14005
  4. [F-Gabber] E. FRIEDLANDER and O. GABBER, Cycle spaces and intersection theory (in Topological Methods in Modern Mathematics, 1993, pp. 325-370). Zbl0830.14008MR94j:14010
  5. [F-Lawson] E. FRIEDLANDER and H. B. LAWSON, A theory of algebraic cocycles (Annals of Math., Vol. 136, 1992, pp. 361-428). Zbl0788.14014MR93g:14013
  6. [F-Mazur] E. FRIEDLANDER and B. MAZUR, Filtrations on the homology of algebraic varieties (Memoir of the A.M.S., Vol. 110, no. 529, 1994). Zbl0841.14019MR95a:14023
  7. [F-Mazur2] E. FRIEDLANDER and B. MAZUR, Correspondence homomorphisms for singular varieties (to appear in Ann. Inst. Fourier). Zbl0811.14007
  8. [Fulton] W. FULTON, Intersection Theory (Ergebnisse der Math, Springer-Verlag, 1984). Zbl0541.14005MR85k:14004
  9. [Grothendieck] A. GROTHENDIECK, Standard Conjectures on algebraic cycles (in Algebraic Geometry, Bombay Colloquium, Oxford, 1969, pp. 193-199). Zbl0201.23301MR42 #3088
  10. [Hain] R. HAIN, Letter to Barry Mazur dated 11/4/90. 
  11. [Kleiman] S. KLEIMAN, Algebraic cycles and the Weil Conjectures (in Dix Exposés sur la cohomologie des schémas, North Holland, 1968, pp. 359-386). Zbl0198.25902MR45 #1920
  12. [Lawson] H. B. LAWSON, Algebraic cycles and homotopy theory (Annals of Math., Vol. 129, 1989, pp. 253-291). Zbl0688.14006MR90h:14008
  13. [Lieberman] D. LIEBERMAN, Numerical and homological equivalence of algebraic cycles on Hodge manifolds (Amer. J. Math., Vol. 90, 1968, pp. 366-374). Zbl0159.50501MR37 #5898
  14. [Lima-Filho] P. LIMA-FILHO, Lawson homology for quasi-projective varieties (Compositio Math., Vol. 84, 1992, pp. 1-23). Zbl0773.14010MR93j:14007
  15. [Mumford] Families of abelian varieties (in Algebraic Groups and Discontinuous Subgroups, Proc. Sympos. Pure. Math., Boulder, Col., 1965, pp. 347-351). Zbl0199.24601
  16. [Nori] Algebraic cycles and Hodge theoretic connectivity (Inventiones Math., Vol. 111, 1993, pp. 349-373). Zbl0822.14008MR94b:14007
  17. [Roberts] J. ROBERTS, Chow's moving lemma (in Algebraic Geometry, Oslo, 1970, F. Oort ed., Wolters-Noordhoff Publ., Groningen, 1972, pp. 89-96). MR52 #3154

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.