A purity theorem for the Witt group
Annales scientifiques de l'École Normale Supérieure (1999)
- Volume: 32, Issue: 1, page 71-86
- ISSN: 0012-9593
Access Full Article
topHow to cite
topOjanguren, Manuel, and Panin, Ivan. "A purity theorem for the Witt group." Annales scientifiques de l'École Normale Supérieure 32.1 (1999): 71-86. <http://eudml.org/doc/82485>.
@article{Ojanguren1999,
author = {Ojanguren, Manuel, Panin, Ivan},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {regular local ring; Witt group; integral scheme; trace form; essentially smooth algebra},
language = {eng},
number = {1},
pages = {71-86},
publisher = {Elsevier},
title = {A purity theorem for the Witt group},
url = {http://eudml.org/doc/82485},
volume = {32},
year = {1999},
}
TY - JOUR
AU - Ojanguren, Manuel
AU - Panin, Ivan
TI - A purity theorem for the Witt group
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1999
PB - Elsevier
VL - 32
IS - 1
SP - 71
EP - 86
LA - eng
KW - regular local ring; Witt group; integral scheme; trace form; essentially smooth algebra
UR - http://eudml.org/doc/82485
ER -
References
top- [1] A. ALTMAN and S. KLEIMAN, Introduction to Grothendieck duality theory, Lect. Notes in Math., Vol. 146, 1970, Springer. Zbl0215.37201MR43 #224
- [2] M. ANDRÉ, Cinq exposés sur la désingularisation, Manuscrit de l'École Polytechnique Fédérale de Lausanne, 1991.
- [3] J.-L. COLLIOT-THÉLÈNE et J.-J. SANSUC, Fibrés quadratiques et composantes connexes réelles, Math. Ann., Vol. 244, 1979, pp. 105-134. Zbl0418.14016MR81c:14010
- [4] D. EISENBUD, Commutative Algebra, Graduate Texts in Mathematics, Vol. 150, Springer, 1994. Zbl0819.13001
- [5] L. EULER, Theorema arithmeticum eiusque demonstratio, Leonhardi Euleri Opera Omnia, series I, opera mathematica, volumen VI, Teubner, 1921. JFM48.0007.01
- [6] F. FERNANDEZ-CARMENA, On the injectivity of the map of the Witt group of a scheme into the Witt group of its quotient field, Math. Ann., Vol. 277, 1987, pp. 453-481. Zbl0641.14003MR88h:11027
- [7] A. GROTHENDIECK, EGA IV, 4ème partie, Publ. Math. IHES, Vol. 32, 1967. Zbl0153.22301
- [8] P. JAWORSKI, Witt rings of fields of quotients of two-dimensional regular local rings, Math. Z., Vol. 211, 1992, pp. 533-546. Zbl0764.11023MR93i:11049
- [9] M. KNEBUSCH, Symmetric and bilinear forms over algebraic varieties, Conference on quadratic forms, Queen's papers in pure and applied mathematics, Vol. 46, 1977, Kingston, Ontario. Zbl0408.15019MR58 #16506
- [10] M.-A. KNUS, Quadratic and Hermitian Forms over Rings, Grundlehren der Math. Wissenschaften, Vol. 294, Springer, 1991. Zbl0756.11008MR92i:11039
- [11] D. POPESCU, General Néron desingularization, Nagoya Math. J., Vol. 100, 1985, pp. 97-126. Zbl0561.14008MR87f:13019
- [12] D. POPESCU, General Néron desingularization and approximation, Nagoya Math. J., Vol. 104, 1986, pp. 85-115. Zbl0592.14014MR88a:14007
- [13] D. POPESCU, Letter to the Editor ; General Néron desingularization and approximation, Nagoya Math. J., Vol. 118, 1990, pp. 45-53. Zbl0685.14009MR91e:14003
- [14] M. OJANGUREN, Quadratic forms over regular rings, J. Indian Math. Soc., Vol. 44, 1980, pp. 109-116. Zbl0621.10017MR85h:11017
- [15] M. OJANGUREN, R. PARIMALA, R. SRIDHARAN and V. SURESH, A purity theorem for the Witt groups of 3-dimensional regular local rings, Proc. London Math. Soc., to appear. Zbl0930.19003
- [16] D. QUILLEN, Higher algebraic K-theory I, Algebraic K-Theory I, Lect. Notes in Math., Vol. 341, Springer, 1973. Zbl0292.18004MR49 #2895
- [17] J-P. SERRE, Corps locaux, Hermann, Paris, 1962. Zbl0137.02601MR27 #133
- [18] G. SCHEJA und U. STORCH, Quasi-Frobenius-Algebren und lokal vollständige Durchschnitte, Manuscripta Math., Vol. 19, 1976, pp. 75-104. Zbl0329.13011MR53 #10822
- [19] R.G. SWAN, Néron-Popescu desingularization, Preprint.
- [20] V. VOEVODSKY, Homology of schemes II, Preprint.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.