A purity theorem for the Witt group

Manuel Ojanguren; Ivan Panin

Annales scientifiques de l'École Normale Supérieure (1999)

  • Volume: 32, Issue: 1, page 71-86
  • ISSN: 0012-9593

How to cite

top

Ojanguren, Manuel, and Panin, Ivan. "A purity theorem for the Witt group." Annales scientifiques de l'École Normale Supérieure 32.1 (1999): 71-86. <http://eudml.org/doc/82485>.

@article{Ojanguren1999,
author = {Ojanguren, Manuel, Panin, Ivan},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {regular local ring; Witt group; integral scheme; trace form; essentially smooth algebra},
language = {eng},
number = {1},
pages = {71-86},
publisher = {Elsevier},
title = {A purity theorem for the Witt group},
url = {http://eudml.org/doc/82485},
volume = {32},
year = {1999},
}

TY - JOUR
AU - Ojanguren, Manuel
AU - Panin, Ivan
TI - A purity theorem for the Witt group
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1999
PB - Elsevier
VL - 32
IS - 1
SP - 71
EP - 86
LA - eng
KW - regular local ring; Witt group; integral scheme; trace form; essentially smooth algebra
UR - http://eudml.org/doc/82485
ER -

References

top
  1. [1] A. ALTMAN and S. KLEIMAN, Introduction to Grothendieck duality theory, Lect. Notes in Math., Vol. 146, 1970, Springer. Zbl0215.37201MR43 #224
  2. [2] M. ANDRÉ, Cinq exposés sur la désingularisation, Manuscrit de l'École Polytechnique Fédérale de Lausanne, 1991. 
  3. [3] J.-L. COLLIOT-THÉLÈNE et J.-J. SANSUC, Fibrés quadratiques et composantes connexes réelles, Math. Ann., Vol. 244, 1979, pp. 105-134. Zbl0418.14016MR81c:14010
  4. [4] D. EISENBUD, Commutative Algebra, Graduate Texts in Mathematics, Vol. 150, Springer, 1994. Zbl0819.13001
  5. [5] L. EULER, Theorema arithmeticum eiusque demonstratio, Leonhardi Euleri Opera Omnia, series I, opera mathematica, volumen VI, Teubner, 1921. JFM48.0007.01
  6. [6] F. FERNANDEZ-CARMENA, On the injectivity of the map of the Witt group of a scheme into the Witt group of its quotient field, Math. Ann., Vol. 277, 1987, pp. 453-481. Zbl0641.14003MR88h:11027
  7. [7] A. GROTHENDIECK, EGA IV, 4ème partie, Publ. Math. IHES, Vol. 32, 1967. Zbl0153.22301
  8. [8] P. JAWORSKI, Witt rings of fields of quotients of two-dimensional regular local rings, Math. Z., Vol. 211, 1992, pp. 533-546. Zbl0764.11023MR93i:11049
  9. [9] M. KNEBUSCH, Symmetric and bilinear forms over algebraic varieties, Conference on quadratic forms, Queen's papers in pure and applied mathematics, Vol. 46, 1977, Kingston, Ontario. Zbl0408.15019MR58 #16506
  10. [10] M.-A. KNUS, Quadratic and Hermitian Forms over Rings, Grundlehren der Math. Wissenschaften, Vol. 294, Springer, 1991. Zbl0756.11008MR92i:11039
  11. [11] D. POPESCU, General Néron desingularization, Nagoya Math. J., Vol. 100, 1985, pp. 97-126. Zbl0561.14008MR87f:13019
  12. [12] D. POPESCU, General Néron desingularization and approximation, Nagoya Math. J., Vol. 104, 1986, pp. 85-115. Zbl0592.14014MR88a:14007
  13. [13] D. POPESCU, Letter to the Editor ; General Néron desingularization and approximation, Nagoya Math. J., Vol. 118, 1990, pp. 45-53. Zbl0685.14009MR91e:14003
  14. [14] M. OJANGUREN, Quadratic forms over regular rings, J. Indian Math. Soc., Vol. 44, 1980, pp. 109-116. Zbl0621.10017MR85h:11017
  15. [15] M. OJANGUREN, R. PARIMALA, R. SRIDHARAN and V. SURESH, A purity theorem for the Witt groups of 3-dimensional regular local rings, Proc. London Math. Soc., to appear. Zbl0930.19003
  16. [16] D. QUILLEN, Higher algebraic K-theory I, Algebraic K-Theory I, Lect. Notes in Math., Vol. 341, Springer, 1973. Zbl0292.18004MR49 #2895
  17. [17] J-P. SERRE, Corps locaux, Hermann, Paris, 1962. Zbl0137.02601MR27 #133
  18. [18] G. SCHEJA und U. STORCH, Quasi-Frobenius-Algebren und lokal vollständige Durchschnitte, Manuscripta Math., Vol. 19, 1976, pp. 75-104. Zbl0329.13011MR53 #10822
  19. [19] R.G. SWAN, Néron-Popescu desingularization, Preprint. 
  20. [20] V. VOEVODSKY, Homology of schemes II, Preprint. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.