SRB measures for non-hyperbolic systems with multidimensional expansion
Annales scientifiques de l'École Normale Supérieure (2000)
- Volume: 33, Issue: 1, page 1-32
- ISSN: 0012-9593
Access Full Article
topHow to cite
topAlves, José Ferreira. "SRB measures for non-hyperbolic systems with multidimensional expansion." Annales scientifiques de l'École Normale Supérieure 33.1 (2000): 1-32. <http://eudml.org/doc/82508>.
@article{Alves2000,
author = {Alves, José Ferreira},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {non-hyperbolic system; invariant measure; hyperbolic time},
language = {eng},
number = {1},
pages = {1-32},
publisher = {Elsevier},
title = {SRB measures for non-hyperbolic systems with multidimensional expansion},
url = {http://eudml.org/doc/82508},
volume = {33},
year = {2000},
}
TY - JOUR
AU - Alves, José Ferreira
TI - SRB measures for non-hyperbolic systems with multidimensional expansion
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2000
PB - Elsevier
VL - 33
IS - 1
SP - 1
EP - 32
LA - eng
KW - non-hyperbolic system; invariant measure; hyperbolic time
UR - http://eudml.org/doc/82508
ER -
References
top- [1] K. ADL-ZARABI, Absolutely continuous invariant measures for piecewise expanding C2 transformations in ℝn with cusps on their boundaries, Ergodic Theory Dynamical Systems 16 (1996) 1-18. Zbl0856.58022MR96k:58129
- [2] J.F. ALVES, CH. BONATTI and M. VIANA, SRB measures for partially hyperbolic systems whose central direction is mostly expanding, Preprint CMUP, University of Porto, 1999. Zbl0962.37012
- [3] M. BENEDICKS and L. CARLESON, On iterations of 1 - ax² on (-1, 1), Ann. Math. 122 (1985) 1-25. Zbl0597.58016MR87c:58058
- [4] M. BENEDICKS and L. CARLESON, The dynamics of the Hénon map, Ann. Math. 133 (1991) 73-169. Zbl0724.58042MR92d:58116
- [5] M. BENEDICKS and L.-S. YOUNG, SRB-measures for certain Hénon maps, Invent. Math. 112 (1993) 541-576. Zbl0796.58025MR94e:58074
- [6] CH. BONATTI, A. PUMARIÑ;O and M. VIANA, Lorenz-like attractors with arbitrary unstable dimension, C. R. Acad. Sci. Série I 325 (1997) 883-888. Zbl0896.58043
- [7] CH. BONATTI and M. VIANA, SRB measures for partially hyperbolic systems whose central direction is mostly contracting, Israel J. Math. (to appear). Zbl0996.37033
- [8] R. BOWEN and D. RUELLE, The ergodic theory of Axiom A flows, Invent. Math. 29 (1975) 181-202. Zbl0311.58010MR52 #1786
- [9] J. BUZZI, A.c.i.m.'s for arbitrary expanding piecewise ℝ-analytic mappings of the plane, Preprint Luminy, 1998.
- [10] L.C. EVANS and R.F. GARIEPY, Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. Zbl0804.28001MR93f:28001
- [11] E. GIUSTI, Minimal Surfaces and Functions of Bounded Variation, Birkäuser, Basel, 1984. Zbl0545.49018MR87a:58041
- [12] P. GÓRA and A. BOYARSKY, Absolutely continuous invariant measures for piecewise expanding C2 transformations in ℝN, Israel J. Math. 67 (1989) 272-286. Zbl0691.28004MR91c:58061
- [13] P. GÓRA and A. BOYARSKY, On functions of bounded variation in higher dimensions, Amer. Math. Month. 99 (2) (1992) 159-160. Zbl0757.26014MR92k:26025
- [14] M. JAKOBSON, Absolutely continuous invariant measures for one-parameter families of one-dimensional maps, Comm. Math. Phys. 81 (1981) 39-88. Zbl0497.58017MR83j:58070
- [15] G. KELLER, Ergodicité et mesures invariants pour les transformations dilatants par morceaux d'une région bornée du plan, C. R. Acad. Sci. Paris Série A 289 (1979) 625-627. Zbl0419.28007MR80k:28016
- [16] A. LASOTA and J.A. YORKE, On the existence of invariant measures for piecewise monotonic maps, Trans. Amer. Math. Soc. 186 (1973) 481-488. Zbl0298.28015MR49 #538
- [17] R. MAÑ;É, Ergodic Theory and Differentiable Dynamics, Springer, Berlin, 1987. Zbl0616.28007
- [18] W. DE MELO and S. VAN STRIEN, One-Dimensional Dynamics, Springer, Berlin, 1993. Zbl0791.58003MR95a:58035
- [19] L. MORA and M. VIANA, Abundance of strange attractors, Acta Math. 171 (1993) 1-71. Zbl0815.58016MR94k:58089
- [20] D. RUELLE, A measure associated with Axiom A attractors, Amer. J. Math. 98 (1976) 619-654. Zbl0355.58010MR54 #3763
- [21] B. SAUSSOL, Absolutely continuous invariant measures for multi-dimensional expanding maps, Preprint Luminy, 1997.
- [22] YA. SINAI, Gibbs measures in ergodic theory, Russ. Math. Surv. 27 (4) (1972) 21-69. Zbl0255.28016MR53 #3265
- [23] D. SINGER, Stable orbits and bifurcations of maps of the interval, SIAM J. Appl. Math. 35 (1978) 260-267. Zbl0391.58014MR58 #13206
- [24] M. TSUJII, Absolutely continuous invariant measures for piecewise real-analytic maps on the plane, Preprint Hokkaido Univ., 1998.
- [25] M. VIANA, Strange attractors in higher dimensions, Bull. Braz. Math. Soc. 24 (1993) 13-62. Zbl0784.58044MR94k:58093
- [26] M. VIANA, Multidimensional nonhyperbolic attractors, Publ. Math. IHES 85 (1997) 63-96. Zbl1037.37016MR98j:58073
Citations in EuDML Documents
top- Sébastien Gouëzel, Decay of correlations for nonuniformly expanding systems
- Viviane Baladi, Michael Benedicks, Véronique Maume-Deschamps, Almost sure rates of mixing for i.i.d. unimodal maps
- José F. Alves, Stefano Luzzatto, Vilton Pinheiro, Markov structures and decay of correlations for non-uniformly expanding dynamical systems
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.