SRB measures for non-hyperbolic systems with multidimensional expansion

José Ferreira Alves

Annales scientifiques de l'École Normale Supérieure (2000)

  • Volume: 33, Issue: 1, page 1-32
  • ISSN: 0012-9593

How to cite

top

Alves, José Ferreira. "SRB measures for non-hyperbolic systems with multidimensional expansion." Annales scientifiques de l'École Normale Supérieure 33.1 (2000): 1-32. <http://eudml.org/doc/82508>.

@article{Alves2000,
author = {Alves, José Ferreira},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {non-hyperbolic system; invariant measure; hyperbolic time},
language = {eng},
number = {1},
pages = {1-32},
publisher = {Elsevier},
title = {SRB measures for non-hyperbolic systems with multidimensional expansion},
url = {http://eudml.org/doc/82508},
volume = {33},
year = {2000},
}

TY - JOUR
AU - Alves, José Ferreira
TI - SRB measures for non-hyperbolic systems with multidimensional expansion
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2000
PB - Elsevier
VL - 33
IS - 1
SP - 1
EP - 32
LA - eng
KW - non-hyperbolic system; invariant measure; hyperbolic time
UR - http://eudml.org/doc/82508
ER -

References

top
  1. [1] K. ADL-ZARABI, Absolutely continuous invariant measures for piecewise expanding C2 transformations in ℝn with cusps on their boundaries, Ergodic Theory Dynamical Systems 16 (1996) 1-18. Zbl0856.58022MR96k:58129
  2. [2] J.F. ALVES, CH. BONATTI and M. VIANA, SRB measures for partially hyperbolic systems whose central direction is mostly expanding, Preprint CMUP, University of Porto, 1999. Zbl0962.37012
  3. [3] M. BENEDICKS and L. CARLESON, On iterations of 1 - ax² on (-1, 1), Ann. Math. 122 (1985) 1-25. Zbl0597.58016MR87c:58058
  4. [4] M. BENEDICKS and L. CARLESON, The dynamics of the Hénon map, Ann. Math. 133 (1991) 73-169. Zbl0724.58042MR92d:58116
  5. [5] M. BENEDICKS and L.-S. YOUNG, SRB-measures for certain Hénon maps, Invent. Math. 112 (1993) 541-576. Zbl0796.58025MR94e:58074
  6. [6] CH. BONATTI, A. PUMARIÑ;O and M. VIANA, Lorenz-like attractors with arbitrary unstable dimension, C. R. Acad. Sci. Série I 325 (1997) 883-888. Zbl0896.58043
  7. [7] CH. BONATTI and M. VIANA, SRB measures for partially hyperbolic systems whose central direction is mostly contracting, Israel J. Math. (to appear). Zbl0996.37033
  8. [8] R. BOWEN and D. RUELLE, The ergodic theory of Axiom A flows, Invent. Math. 29 (1975) 181-202. Zbl0311.58010MR52 #1786
  9. [9] J. BUZZI, A.c.i.m.'s for arbitrary expanding piecewise ℝ-analytic mappings of the plane, Preprint Luminy, 1998. 
  10. [10] L.C. EVANS and R.F. GARIEPY, Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. Zbl0804.28001MR93f:28001
  11. [11] E. GIUSTI, Minimal Surfaces and Functions of Bounded Variation, Birkäuser, Basel, 1984. Zbl0545.49018MR87a:58041
  12. [12] P. GÓRA and A. BOYARSKY, Absolutely continuous invariant measures for piecewise expanding C2 transformations in ℝN, Israel J. Math. 67 (1989) 272-286. Zbl0691.28004MR91c:58061
  13. [13] P. GÓRA and A. BOYARSKY, On functions of bounded variation in higher dimensions, Amer. Math. Month. 99 (2) (1992) 159-160. Zbl0757.26014MR92k:26025
  14. [14] M. JAKOBSON, Absolutely continuous invariant measures for one-parameter families of one-dimensional maps, Comm. Math. Phys. 81 (1981) 39-88. Zbl0497.58017MR83j:58070
  15. [15] G. KELLER, Ergodicité et mesures invariants pour les transformations dilatants par morceaux d'une région bornée du plan, C. R. Acad. Sci. Paris Série A 289 (1979) 625-627. Zbl0419.28007MR80k:28016
  16. [16] A. LASOTA and J.A. YORKE, On the existence of invariant measures for piecewise monotonic maps, Trans. Amer. Math. Soc. 186 (1973) 481-488. Zbl0298.28015MR49 #538
  17. [17] R. MAÑ;É, Ergodic Theory and Differentiable Dynamics, Springer, Berlin, 1987. Zbl0616.28007
  18. [18] W. DE MELO and S. VAN STRIEN, One-Dimensional Dynamics, Springer, Berlin, 1993. Zbl0791.58003MR95a:58035
  19. [19] L. MORA and M. VIANA, Abundance of strange attractors, Acta Math. 171 (1993) 1-71. Zbl0815.58016MR94k:58089
  20. [20] D. RUELLE, A measure associated with Axiom A attractors, Amer. J. Math. 98 (1976) 619-654. Zbl0355.58010MR54 #3763
  21. [21] B. SAUSSOL, Absolutely continuous invariant measures for multi-dimensional expanding maps, Preprint Luminy, 1997. 
  22. [22] YA. SINAI, Gibbs measures in ergodic theory, Russ. Math. Surv. 27 (4) (1972) 21-69. Zbl0255.28016MR53 #3265
  23. [23] D. SINGER, Stable orbits and bifurcations of maps of the interval, SIAM J. Appl. Math. 35 (1978) 260-267. Zbl0391.58014MR58 #13206
  24. [24] M. TSUJII, Absolutely continuous invariant measures for piecewise real-analytic maps on the plane, Preprint Hokkaido Univ., 1998. 
  25. [25] M. VIANA, Strange attractors in higher dimensions, Bull. Braz. Math. Soc. 24 (1993) 13-62. Zbl0784.58044MR94k:58093
  26. [26] M. VIANA, Multidimensional nonhyperbolic attractors, Publ. Math. IHES 85 (1997) 63-96. Zbl1037.37016MR98j:58073

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.