Hodge decomposition for higher order Hochschild homology

Teimuraz Pirashvili

Annales scientifiques de l'École Normale Supérieure (2000)

  • Volume: 33, Issue: 2, page 151-179
  • ISSN: 0012-9593

How to cite

top

Pirashvili, Teimuraz. "Hodge decomposition for higher order Hochschild homology." Annales scientifiques de l'École Normale Supérieure 33.2 (2000): 151-179. <http://eudml.org/doc/82512>.

@article{Pirashvili2000,
author = {Pirashvili, Teimuraz},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {free loop space; cyclic homology; simplicial model for the sphere; Hochschild homology; mapping space},
language = {eng},
number = {2},
pages = {151-179},
publisher = {Elsevier},
title = {Hodge decomposition for higher order Hochschild homology},
url = {http://eudml.org/doc/82512},
volume = {33},
year = {2000},
}

TY - JOUR
AU - Pirashvili, Teimuraz
TI - Hodge decomposition for higher order Hochschild homology
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2000
PB - Elsevier
VL - 33
IS - 2
SP - 151
EP - 179
LA - eng
KW - free loop space; cyclic homology; simplicial model for the sphere; Hochschild homology; mapping space
UR - http://eudml.org/doc/82512
ER -

References

top
  1. [1] Anderson D.W., Chain functors and homology theories, in : Lect. Notes in Math., Vol. 249, 1971, pp. 1-11. Zbl0229.55005MR49 #3895
  2. [2] Anderson D.W., A generalization of the Eilenberg-Moore spectral sequence, Bull. Amer. Math. Soc. 78 (1972) 784-786. Zbl0255.55012MR46 #9987
  3. [3] Baues H.J., Wirsching G.J., Cohomology of small categories, J. Pure Appl. Algebra 38 (1985) 187-211. Zbl0587.18006MR87g:18013
  4. [4] Breen L., Extensions of abelian sheaves and Eilenberg-MacLane algebras, Invent. Math. 9 (1969/1970) 15-44. Zbl0181.26401MR41 #3488
  5. [5] Bousfield A.K., The homology spectral sequence of a cosimplicial space, Amer. J. Math. 109 (1987) 361-394. Zbl0623.55009MR88j:55017
  6. [6] Burghelea D., Vigué-Poirrier M., Cyclic homology of commutative algebras I, in : Lect. Notes in Math., Vol. 1318, Springer, Berlin, 1988, pp. 51-72. Zbl0666.13007MR89k:18027
  7. [7] Cartan H., Eilenberg S., Homological Algebra, Princeton, 1956. Zbl0075.24305MR17,1040e
  8. [8] Dold A., Zur Homotopietheorie der Kettenkomplexe, Math. Ann. 140 (1960) 278-298. Zbl0093.36903MR22 #3752
  9. [9] Dold A., Puppe D., Homologie nicht-additiver Funktoren, Anwendungen, Ann. Inst. Fourier 11 (1961) 201-312. Zbl0098.36005MR27 #186
  10. [10] Félix Y., Thomas J.C., The monoid of self-homotopy equivalences of some homogeneous spaces, Exposition. Math. 12 (1994) 305-322. Zbl0846.55005MR95i:55013
  11. [11] Gabriel P., Zisman M., Calculus of Fractions and Homotopy Theory, Springer, 1967. Zbl0186.56802MR35 #1019
  12. [12] Gerstenhaber M., Schack S., A Hodge-type decomposition for commutative algebra cohomology, J. Pure Appl. Algebra 48 (1987) 229-247. Zbl0671.13007MR88k:13011
  13. [13] Grothendieck A., Sur quelques points d'algèbre homologique, Tohoku Math. J. 9 (1957) 119-221. Zbl0118.26104MR21 #1328
  14. [14] Jibladze M., Pirashvili T., Cohomology of algebraic theories, J. Algebra 137 (1991) 253-296. Zbl0724.18005MR92f:18005
  15. [15] Jones J.D.S., Cyclic homology and equivariant homology, Invent. Math. 87 (1987) 403-423. Zbl0644.55005MR88f:18016
  16. [16] Loday J.-L., Opérations sur l'homologie cyclique des algèbres commutatives, Invent. Math. 96 (1989) 205-230. Zbl0686.18006MR89m:18017
  17. [17] Loday J.-L., Cyclic Homology, 2nd edition, Grund. Math. Wiss., Vol. 301, Springer, 1998. Zbl0885.18007MR98h:16014
  18. [18] Lydakis M., Smash products and Γ-spaces, Math. Proc. Camb. Phil. Soc. 126 (1999) 311-328. Zbl0996.55020MR2000i:55049
  19. [19] McCarthy R., On operations for Hochschild homology, Comm. Algebra 21 (1993) 2947-2965. Zbl0809.18009MR95a:19005
  20. [20] Pirashvili T., Kan extension and stable homology of Eilenberg-Mac Lane spaces, Topology 35 (4) (1996) 883-886. Zbl0858.55006MR97k:55008
  21. [21] Pirashvili T., Dold-Kan type theorem for Γ-groups, Preprint, University of Bielefeld, 1998. 
  22. [22] Pirashvili T., Richter B., Robinson-Whitehouse complex and stable homotopy, Topology, to appear. Zbl0957.18005
  23. [23] Quillen D.G., On (co)homology of commutative rings, AMS Proc. Sym. Pure Math. XVII (1970) 65-87. Zbl0234.18010MR41 #1722
  24. [24] Richter, B., E∞-structure of Q*(R), Math. Ann., to appear. Zbl0962.16007
  25. [25] Ronco M., On the Hochschild homology decomposition, Comm. Algebra 21 (1993) 4694-4712. Zbl0810.16009MR94k:16015
  26. [26] Schubert H., Kategorien. I, II, Heidelberger Taschenbücher, Bände 65, 66, Springer, Berlin, 1970. Zbl0205.31904MR43 #311
  27. [27] Segal G., Categories and cohomology theories, Topology 13 (1974) 293-312. Zbl0284.55016MR50 #5782
  28. [28] Smith L., On the characteristic zero cohomology of the free loop space, Amer. J. Math. 103 (1981) 887-910. Zbl0475.55004MR83k:57035
  29. [29] Vigué-Poirrier M., Décompositions de l'homologie cyclique des algèbres différentielles graduées commutatives, K-theory 4 (1991) 399-410. Zbl0731.19004MR92e:19004
  30. [30] Weibel C., The Hodge filtration and cyclic homology, K-theory 12 (1997) 145-164. Zbl0881.19002MR98h:19004
  31. [31] Whitehouse S.A., Gamma (co)homology of commutative algebras and some related representations of the symmetric group, Thesis, University of Warwick, 1994. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.